Secure operations as congestion control mechanism
within OpenStack based Cloud Laboratory

Franko HrZi¢ and Domagoj Poljanci¢ and Tihana Galinac Grbac
Faculty of Engineering
University of Rijeka
Vukovarska 58, 51000 Rijeka
Email: tihana.galinac @riteh.hr

Abstract—In this paper we present a service that provides
secure operation for OpenStack based compute operations. It
is suitable for governing sensitive configuration operations in
dynamic untrusted Cloud environments. We provide an example
that is implemented as part of SEIPLab Cloud Service Mon-
itoring System. SEIPLab Cloud is virtual laboratory solution
developed for use of Software Engineering and Information
Processing Laboratory equipment at Faculty of Rijeka that is
used for student Software Engineering projects. To enable reliable
simultaneous use of number of students and students groups
sharing the same physical SEIPLab infrastructure we developed
a smart management system for SEIPLab Cloud. The notification
service, is a function that is realized as a service within OpenStack
based Cloud solution that implements notification and validation
of user activates trough SMS and e-mail communication. This
service restricts user behavior in operations related to configura-
tion of user laboratory environments. Thus, the service avoids
possible cloud management congestion situations initiated by
simultaneous users and irregular user behaviour.

I. INTRODUCTION

Infrastructure as a service (IaaS) is a paradigm that provides
opportunity to end users to use infrastructure resources (CPU,
I/O, memory) of a Cloud provider on demand and as a service.
With this opportunity the end user is offloaded with resource
care activities. In a case of a service malfunction the end user
may just switch to another service deployment solution within
the same Cloud or to another Cloud provider. However, some
applications require the process of transition to be reliable and
secure and based on timely notification and decision.

Cloud providers are challenged to offer its infrastructure as
a service, to many of its users and simultaneously. Success
of Cloud provider greatly depends on reliability, availability,
elasticity and performance of services offered to its users
[1]. Even best business models may fail due to unreliable
and unavailable service and that is why Cloud providers are
competing among themselves to attract and maintain customer
trust. We define the provider’s Cloud resiliency as its ability
to predict failure or service unavailability and act accordingly
to avoid and mitigate problems related to proper service
executions. One important method to do that is by monitoring
and controlled guiding of user initiated operations executed
within the Cloud system.

In most cases the Cloud providers provide services spe-
cialised to offer the hardware and software management to

978-1-5090-3720-9/16/$31.00 © 2016 IEEE

its end users. They may serve numerous end users simul-
taneously and their management activities are focused on
proper operation of Cloud resources in common. Unfortu-
nately, there are still lack of management operation func-
tions that secure reliable Cloud service operation and Cloud
provider resiliency. Malfunctions or Service Level Agreement
(SLA) violations that are related to single customer may be
undetected to Cloud provider and thus not properly handled
to end users satisfaction. Autonomous services may be of
critical importance in such situations [2]. An autonomous
system is capable to exhibit a large degree of self-governance
without any support of external entities and is completely
independent while autonomic system do the same but based
on ’internal policies and principles which can be described
as autonomic [3]. The complexity of operations that are
simultaneously executed within Cloud environments that are
under supervision of Cloud provider are the main cause of
failing to address SLA and quality issues with every single
end user. New concepts that would be applied within new
generation of intelligent computer system need to be developed
[4]. Focus is on management procedures that would minimise
the need of human administrator. In such scenario, control
procedures based on the monitoring systems of resource usage
and operations executed per each end user are investigated.
In aim to investigate development of autonomic manage-
ment procedures and introduce these concepts into education
system within the university, a number of projects have been
established to introduce virtualisation into student lab envi-
ronment and enable students to experiment with management
procedures over the Laboratory resources [5], [6], [7]. This
work was motivated by the same goal when virtualisation was
introduced into Computing study programme of Faculty of
Engineering at University of Rijeka. The Software Engineering
and Information Processing Laboratory (SEIPLab)! at Faculty
of Engineering, University of Rijeka host numerous physical
but also software resources that were virtualized using Open-
Stack technology. These virtualized resources were provided
to students ’as a service’ to experiment in their student
projects within the Software Engineering Management course
at graduate level of Computing study programme of Faculty

Yhitp : / /www.seiplab.riteh.uniri.hr/

of Engineering, University of Rijeka. The SEIPLab resources
are limited and a number of unexperienced student groups
experiment with SEIPLab virtual resources simultaneously. By
executing a number of student projects on SEIPLab Cloud
we identified that student unexperience is negatively related
to students patience while waiting response from SEIPLab
Cloud platform and that was identified as the root cause
of huge workloads and delays in SEIPLab Cloud service
operation. Therefore, we were motivated to develop a guided
and authorized procedure for critical operations triggered by
students while managing and orchestrating SEIPLab virtual
resources. This work is aligned with work of research project
executed within the SEIPLab on Evolving Software Systems:
Analysis and Innovative Approaches for Smart Management
(EVOSOFT) with aim to investigate and develop new and
innovative approaches for autonomic and smart management
of evolving software systems.

Besides the cloud computing security issues and challenges,
the student Lab environments have some additional specific
challenges that we are addressing in this paper [8]. There
are number of security models and their implementation may
vary depending on the addressed needs within the context
of application. Furthermore, there are studies working on
congestion control mechanisms aiming to overcome load sit-
uations [9]. For example the congestion control mechanisms
are focused on fair resource allocation among users during
congestion [10]. In our study we approached the congestion
control by employing additional authorisation of end user
and thus providing early feedback that would encourage the
student to be patient and gaining more time to user request
to be executed. The Notification service presented in this
paper provide guided execution of student operations, in
particular creation of virtual machine instance, with additional
authorisation and authentication while operating over Cloud
resource configuration and thus enabled better availability and
reliability of SEIPLab Cloud resources. Our proposal is based
on using the standard security modules available within the
implementation of OpenStack Keystone service management
module and related Python application platform interface that
helped us to automate OpenStack scripts. Massive delays
of working system are minimised with help of Notification
service. As part of the SEIPLab experimental platform we
are developing a number of management and orchestration
services for executing student projects.

II. TECHNOLOGY
A. Cloud technologies

Cloud computing [11] is a paradigm where any physical
resource can be virtualized and provided in ’as a service’
fashion over the Internet network to its users. The key element
of cloud computing paradigm is virtualisation where network
resources are separated from their logical software repre-
sentation. Logical abstraction of network resources enables
easier and dynamic management. With this paradigm the
services can be enabled and tailored per user, while the costs
of management activities are drastically decreased. We may

vitalise following network resources and provide in ’as a
service’ fashion: physical hardware (Infrastructure as a service,
laaS), operating system (Platform as a Service, PaaS) and
application software (Software as a Service, SaaS).

There is lot of work done on virtualisation of network re-
sources and numerous commercial Cloud environments (Ama-
zon EC2, Google App Engine, Microsoft Azure, VMware,
KVM, etc.) are offering all network resources as a service. At
the same time there is ongoing development of open platforms
one example is OpenStack. However, there is limited related
work on managing these virtual network services. For dynamic
use of network resources by numerous simultaneous users it is
of crucial importance to implement reliable, secure operation
of these network function virtualisation NFV services.

OpenStack has been developed in number of projects. Each
project has implemented specific functionality in its separate
module that communicate in between through RabitMQ mes-
saging system for reliable communication. The modules are
implementing following; compute services in nova, network-
ing in quantum, storage services in cinder, identity services in
keystone, image services in glance. These modules are forming
the main core elements of OpenStack. Also, these services
may be accessed and used through standardized Application
Platform Interfaces (API), through Graphical User Interface
that provides the most standard set of functions, but also
through Python libraries’ and HEAT resource module for
orchestration of resources®. The main idea is to provide a
standardized set of interfaces to the end users and enable them
to develop its own customized cloud management scripts and
services.

Since there are a number of possibilities that OpenStack
provide ’as a service’ and huge market penetration for use
of these services, the complexity of management operations
within the Cloud environments is growing. Therefore, there
is ongoing work for autonomous control for large scale and
reliable services within and across Cloud environments. Such
example is an European project Autonomous Control for a
Reliable Internet of Services (ACROSS?). The student project
presented in this paper is one of the numerous student projects
performed within Software Engineering and Information Pro-
cessing Laboratory (SEIPLab) aiming to establish experimen-
tal platform for research on predicting and modelling of evolv-
ing software systems, effect of service composition structure
and performance, quality and reliability within EVOSOFT
project.

B. Standardisation

The European Telecommunications Standards Institutes
Network Functions Virtualization (ETSI NFV) Industry Spec-
ification Group 13 is defined to work on Management and
Orchestration (MANO) of NVF deployments in virtualized
environments. The work of this group is focused on abstraction
models and Application Platform Interfaces, provisioning and

2https : //docs.python.org/3/library/
3http : //docs.openstack.org/developer/heat/
4http : //www.cost — across.nl/

configuration of NFV resources, operational management,
interworking with existing Operating systems within the net-
work. The ongoing activity is to develop an open source NFV
management and orchestration software platform. The main
objective of this working group is to consolidate activities by
numerous Cloud platform developers and unify its common
operation to enable its secure and reliable interworking func-
tions.

C. SEIPLab Cloud Environment

In the SEIPLab the Cloud environment is established with
Mirantis Open Stack software distribution °.

For the purpose of student projects the limited system
administrative access rights are provided to students. Available
Cloud resources are distributed among number of students
within the course of Software Engineering Management at
Computing study programme of Faculty of Engineering, Uni-
versity of Rijeka. Since students work in pairs the resources
are assigned to the student pairs organized in student projects.
A local SQL database was created with student project, student
name, surname, id, user id, and password. The restricted usage
of SEIPLab Cloud resources are assigned to each student
project and resource management is performed with tenant
quota assignments through Keystone Application Platform
Interface. Students access the SEIPLab resources over the
secure SSH connection with provided user credentials that
are verified at user login. Also, all user actions and resource
use is restricted per student project that students belong.
Therefore, user actions and resource usage is verified at every
user action activation. The configurations created by student
projects is removed periodically from the SEIPLab Cloud
environment. Project actions are monitored through SEIPLab
Cloud environment and their lifetime is limited by SEIPLab
administrator. All actions with timeout are deactivated and
removed during the daily system scan.

III. NOTIFICATION SERVICE

During the execution of student projects using SEIPLab
Cloud environment number of students simultaneously used
the SEIPLab Cloud resources. There were problems with
congestion of student requests while attempting to execute
Actions within the SEIPLab Cloud. The Notification service
is developed to overcome this limitations.

The implementation of Notification service is done by using
OpenStack Nova-—api resources and Python scripts. Nova,
OpenStack Compute service that is used for hosting and
managing cloud computing systems, provides its own API
for the Python programming language. In Notification service,
Nova is used for controlled creating a computing instance on
OpenStack cloud. So, to create these instances and use Nova,
the Notification service is using following resources:

novaclient.client A resource that provides access to the
Nova part of OpenStack. The resource is used for scanning
OpenStack cloud flavors, images, security keys and networks,

Shttps://www.mirantis.com/

respectively all the settings that are needed to create the in-
stance. Also, when all of the settings needed for the instance to
perform are installed, the novaclient.client resource creates
that instance on OpenStack.

Keystone service is identity service used by OpenStack
for authentication and high-level authorization. It provides
a central directory of OpenStack service users and acts as
a common authentication system across the cloud operating
system. When establishing SEIPLab environment we used the
Keystone service for defining students and student groups
with access rights to access the SEIPLab Cloud resources
over OpenStack. The student identity is stored in Keystone
module and this information is used within Notification ser-
vice. Without providing user credentials (his environmental
user credentials) Notification service script cannot make any
changes to OpenStack.

The Notification service uses Python scripts that implement
and collect all the necessary data for sending an e-mail or an
SMS to the user, such as chosen instance settings, users e-
mail address, a mobile phone number. Python scripts use the
following libraries:

o time The library that provides time delay. It is necessary
to give OpenStack a few seconds for creating and setting
up the instance.

o os/environ The library used for collecting environmental
variables that are needed for authentication.

e Os The library provides many useful functions to work
with a terminal. The Notification service uses os library
to edit the terminal and to communicate with the user.

e Random The library that provides random generated
numbers. The Notification service generates the verifi-
cation code with random characters.

o smtplib The smtplib module defines an SMTP client
session object that can be used to send an e-mail to
any Internet machine with an SMTP or ESMTP listener
daemon, generally, it is used for sending an e-mail to the
user.

e Clockwork Clockwork is a Python wrapper for Clock-
work SMS API a service that provides easy SMS sending
to any mobile number specified in the script.

e Validatecmail Validate email is a Python package
whose task is to check if the e-mail is valid, formed
properly and if the e-mail truly exists.

Notification service pseudo code will be elaborated in the
following lines:

1) Import all the necessary libraries and modules.

2) Provide user credentials to OpenStack

3) Fetch all available properties (flavor, image, security key,
network) from OpenStack server for the creation of a
Computing instance.

4) Prompt the user to set up all properties for his instance.

5) Prompt the user to give an e-mail for the verification
code.

6) Generate the e-mail with basic information about the
instance and the verification code.

User:

OpenStack
Client
OpenStack P
i Notification Service User Mail Client
H Starts o
>
E< Enter Instance Name

Instance name

OpenStack Nova

User SMS Client .
Service

Check Instance settings

< Display Valid Settings for Instance

f Instance flavor,image,key,network |
>

j(Enter e-mail adress

Check e-mail address

E-mail address ok
[rmmmmm s -

Sends Verification code

€< E-mail successfully sent

Verification code

User e-mail address

T Check Verification
HEDY Code

Create Instance

Instance created

Instance created

Kmm e e

R SMS Successfully Sent |:|< : :

Send SMS

'SMS Sent

Fig. 1. Message Sequence Chart diagram of Notification service

Send an e-mail to the user and wait for him to enter the
verification code.

If the verification code is correct, the instance will be
created, otherwise the script will be stopped.

If the instance is successfully created, send an SMS to
the administrator, otherwise stop the script.

Inform the user about the script created.

7
8)
9)

10)

The high level message flow among the entities is depicted
in the Figure 1. We have following entities: the user as
OpenStack Client, the OpenStack Notification service, the
User Mail Client, the User SMS Client and the OpenStack
Nova Service. As already explained, we assume the user
is a student that has been authenticated to OpenStack ser-
vice by using Keystone module and that he gained nec-
essary credentials. Once the credentials are set up, user
starts the OpenStack Notification service by simply starting
Notification_service.py script. When script is started, it
welcomes user and asks him for confirmation that he wants

to start the script. When Notification_service.py script is
started, it instance novaclient object that scans OpenStack
server and store all properties required for creating instance.
Once when all properties are acquired and stored in separate
lists (images, flavors, keys, networks) script prompts user to
enter instance name. After the name is entered, script prompts
user to choose properties for his instance from properties
lists that are generated in step before. When all necessary
data for instance creation is prepared, validation procedure
starts. First of all, sender e-mail address is provided by
Notification_service. Secondly, script asks user to enter
his email address on which he will receive validation code.
Email address from user is form validated. The verification
code is generated by the Notification service using uppercase
and lowercase letters, also including numbers. Once when
validation code is generated, for example: AOlwnTr3, it is
sent to user email address in the form depicted in figure 2.

Afterwards the user enters the verification code. The Notifi-

You have reguested instance creation, instace that
will be created have next attributes:

Instance name: users_instace_name

Instance image: users_prompted _instance_image
Instance key: users_prompted key

Instance network: users_prompted _network

Fig. 2. Output message

cation service checks the verification code by simply matching
user entered code against generated one. If the code is correct,
Notification service generates new nova object that creates new
instance with properties that user has entered on the OpenStack
server. During the time the instance is being created, the No-
tification service sends an SMS to the administrator informing
him of the taken actions (the instance being created) providing
instance name and user’s email address. Once the procedure
is completed, the Notification service informs the user that the
instance is successfully created.

IV. BENEFITS AND DISCUSSION

The main benefit of using Notification service arises from
the fact that it is very scalable service that can find its place
in most applications. Here we discuss identified core benefits
for using it:

1) Authorisation: Notification service provides an addi-
tional authorisation system. Even if someone were to
steal users credentials, he would still need to provide
an email address to execute any action on Cloud. Also
every action taken by the user is monitored by the cloud
administrator via SMS. That would provide additional
security mechanism for users of SEIPLab Cloud re-
sources.

2) User control: Sometimes users that have access to cloud
resources unintentionally overuse them without caution.
In that case, the cloud administrator can react by sending
an email to them, since he knows who is overusing
the cloud resources. This scenario is very common if
cloud is shared by many people who need to use limited
resources. On that way, the student user is aware of this
monitoring service and because of that the assumption
is that she or he would more use Cloud resources with
more care and patience. We expect that this awareness
would somehow limit the number of unfinished jobs.

3) Awareness: By forcing the user to open an email and
enter the verification code, Notification service puts an
additional effort for the user who now needs to rethink
about the actions he is going to take. Often users quit
their action, because by the time they open the email and

enter the verification code, the action they were going
to take is no longer needed.

4) Performance: Additional verification procedure that
will divide a bigger job into smaller two jobs introducing
an individual sms sent to student personal and professor
equipment may result with student grater patience while
using Cloud resources because she/he was able to com-
municate with system and thus introduce a confidence
into service. We expect that more confident user would
be more patient with a service waiting time and that
would eliminate unnecessary load from forced service
shut down by the student user. Therefore, we may
have positive effect on enhancing server performances.
Furthermore, splitting one bigger task the Cloud plat-
form has to execute into two tasks with introduced
new communication service is expected to have positive
effect on performance although some additional time
would be introduced in total service delivery but with
smaller response time for each job within the service.

5) Monitoring and statistics: additional verification may
improve resource use monitoring and statistics from
server resources that may be further used for student
evaluation and future Cloud configuration enhancements
and Cloud resource planing.

6) Division of access rights and policies Because of
additional authentication procedure the operation that
use such Notification service may employ additional
policies that may be independent of user properties. The
management of such policies is now much easier since
these may be tied to operations and users independently.

V. CONCLUSION AND FUTURE WORK

The virtualisation technologies have huge potential for fu-
ture use of computation resources in ’as a service’ fashion.
This concept is expected to introduce revolution not only in
computer science domain but also in numerous other appli-
cation domains of information and communication technolo-
gies. The autonomic and autonomous management functions
within virtualised infrastructure environments are crucial for
its future wider adoption. In this paper, we discuss problems
in simultaneous experimentation of unexperienced students on
the same SEIPLab infrastructure through virtualised solution
based on Mirantis and OpenStack. The service unavailability
caused by numerous student requests has been addressed with
the proposed notification service. Each time a student wants to
execute instantiation operation his identity is verified not only
within the Open Stack environment with usual student creden-
tials but also by SMS or email notification and authorisation
service. Thus, students get confirmation that their request is
processing and more controlled execution of critical operations
is introduced. This approach is very useful in the case of
student project virtual laboratory and reduced the impact of
workload caused by eager students. We discussed benefits in
terms of additional security, better control of user operations
and behaviour, user awareness of controlled environment,
performance and monitoring and statistics. Still, our discussion

was based just on the facts that arise from the service design.
Our future work would focus more on quantifying these
benefits with concrete measurements of using the service by
many users in future operations of SEIPLab Cloud. As our
future work we aim to develop an autonomic student platform
system that would be capable to self manage and control
SIPLab Cloud platform while executing student projects. This
work contributes to our goal within the EVOSOFT project
to understand complex system behaviour and develop sound
design principles for building complex and distributed systems.

ACKNOWLEDGMENT

This work has been supported in part by Croatian Sci-
ence Foundation’s funding of the project UIP-2014-09-7945
Evolving Software Systems: Analysis and Innovative Ap-
proaches for Smart Management (EVOSOFT), the University
of Rijeka Research Grant 13.09.2.2.16 and COST Action
1304 Autonomous Control for a Reliable Internet of Services
(ACROSS).

REFERENCES

[1] M. Armbrust, et. al., A view of cloud computing, Commun. ACM 53(4),
5058, 215 (2010)

[2] I. Brandic, Towards self-manageable cloud services, in Proc. of the 2009
33rd Annual IEEE International Computer Software and Applications
Conference - Volume 02, ser. COMPSAC 09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 128133.

[3] N. Agolumine, ”Autonomic Network Management Principles, From Con-
cepts to Applications”, Elsevier, London, UK, 2011.

[4] R. Sterritt, M. Parashar, H. Tianfield, and R. Unland. ”A concise intro-
duction to autonomic computing”, Adv. Eng. Inform. 19, 3 (July 2005),
181-187.

[5] K. Krishna, W. Sun, P. Rana, T. Li, and R. Sekar. V-netlab: A cost-
effective platform to support course projects in computer security. In Pro-
ceedings of 9th Colloquium for Information Systems Security Education,
June 2005.

[6] W. D. Armitage, A. Gaspar, and Matthew Rideout. 2007. Remotely
accessible sandboxed environment with application to a laboratory course
in networking. In Proceedings of the 8th ACM SIGITE conference on
Information technology education (SIGITE *07). ACM, New York, NY,
USA, 83-90.

[7] B. R. Anderson, A. K. Joines, and T. E. Daniels. 2009. Xen worlds:
leveraging virtualization in distance education. In Proceedings of the
14th annual ACM SIGCSE conference on Innovation and technology in
computer science education (ITiCSE ’09). ACM, New York, NY, USA,
293-297.

[8] K. Popovié¢ and Z. Hotenski, “Cloud computing security issues and chal-
lenges,” MIPRO, 2010 Proceedings of the 33rd International Convention,
Opatija, Croatia, 2010, pp. 344-349.

[9] K. S. Reddy and L. C. Reddy, A Survey on Congestion Control
Mechanisms in High Speed Networks, International Journal of Computer
Science and Network Security (IJSNS), Vol.8, No.1, Jan. 2008.

[10] T. Tomita and S. i. Kuribayashi, "Congestion control method with fair
resource allocation for cloud computing environments,” Communications,
Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim
Conference on, Victoria, BC, 2011, pp. 1-6.

[11] Cloud Computing: The New IT Paradigm, 2010, available at
http://itechthoughts.wordpress.com/2010/02/23/cloud-computing-the-
new-it-paradigm

