

ICT COST Action IC1304

Autonomous Control for a Reliable Internet of Services (ACROSS)

Modeling fault behavior in evolving complex open software environments ACROSS MC meeting, October 13, 2016, Bilbao, Spain

Tihana Galinac Grbac

UIP-2014-09-7945 EVOSOFT

Nodern networks and software

- Software become central part of the modern network
- It should run on any hardware, serve to many users, satisfy their complex communication needs and deliver proper ICT service, effectively and efficiently
- Modern software has to be flexible on network context, information context, communication context,
- Modern network should provide reliable and robust ICT services (resistant against system failures, cyberattacks, high-load and overload situations, flash crowds, etc.)

Key problems with software evolution

- More and more software systems tend to evolve towards complex software systems (e.g. IoS)
- Interconnection of peripheral systems over distributed network into system of systems (IoT)
- Key problems become:
 - Can we develop foundations on software behavior?
 - How can we measure software behaviour in network?
 - Can we predict and simulate software behaviour in network?
 - How to manage complex software system?
 - Are we able just by observing properties of system parts to predict and model its overall behaviour?

Relation to ACROSS

- Reliability and availability service chains will very much depend on their structure
- knowing the appropriate statistical fault distribution would enable more systematic approach for automated guidance for creation of reliable software chains
- Interesting is to model the underlying processes that generate distributions and how they influence the statistical fault distributions
- Context awarness based on system structure and measurements on software abstract levels

Previous studies on fault distributions

- Empirical studies on fault distributions
- Analytical studies on fault distributions
- Industrial versus open source

System verification and reliability

- Number of levels of abstraction
- Global properties of system and local properties describing component behaviour
- Imposible to derive simple rules from local properties towards global properties*

System and system components

Source: Complex software systems : Formalization and Applications -Work done in EU project GENNETTEC: GENetic NeTworks: Emergence and Complexity

A small number of modules contain most of the faults

Pareto principle: 80 – 20 rule

Vilfredo Federico Damaso Pareto

- 1906: 80% of the land in Italy was owned by 20% of the population
- Income and wealth among the population follows a Pareto distribution, a power law probability distribution
- Small occurancies are extremely comon and large occurancies are extremely rare

Fault distributions

Empirical studies on fault distributions

- N. E. Fenton and N. Ohlsson, "Quantitative Analysis of Faults and Failures in a Complex Software System," IEEE Trans. Softw. Eng., vol. 26, no. 8, pp. 797-814, Aug. 2000.
- C. Andersson and P. Runeson, "A Replicated Quantitative Analysis of Fault Distributions in Complex Software Systems," IEEE Trans. Softw. Eng., vol. 33, no. 5, pp. 273-286, May 2007.
- T. Galinac Grbac, P. Runeson and D. Huljenic, "A Second Replicated Quantitative Analysis of Fault Distributions in Complex Software Systems," IEEE Trans. Softw. Eng., vol. 39, no. 4, pp. 462-476, Apr. 2013.

Analytical fault distributions

- All previous principles ultimately depend on the underlying probability distribution
- the fulfillment of a certain empirical principle does not determine the probability distribution uniquely
- The distibutions like double Pareto, Weibull, lognormal, Pareto, and Yule-Simon with powerlaw in the tail are confirmed
- 1. Les Hatton. Power-Law Distributions of Component Size in General Software Systems. IEEE Trans. Software Eng. 35(4): 566-572
- 2. Tihana Galinac Grbac, Darko Huljenić. On the Probability Distribution of Faults in Complex Software Systems, Information and Software Technology, published online first.

Research questions

- RQ1: How faults are distributed across the software units
- RQ2: Does fault distribution depends on development environment
- RQ3: Is the fault distribution persitant over the system evloution

Results of analitical distributions fit

Nonlinear regression fit for Pareto, double Pareto, Weibull and Lognormal distribution

COST ACROSS 2nd Summer School, May 27-31, Opatija, Croa Autonomous Control for Reliable Future Networks and Services

Data selection

- complex enough for network analysis
- evolve over a number of system releases
- Industrial and open access software
- Acess to source code and defect repository
- we selected one industrial telecom core network product from 4G network and two Eclipse plugins: PDE, JDT

Data collection

Source code repository - collection of modules, Classes, software units

Failure report repositoryRepository- collection of modules,Classes, software units

Distribution fit across the studies

Rank	This study	Galinac Grbac et al. [2]	Concas et al. [1]	Zhang [3]
1	Yule–Simon	Double Pareto	Yule–Simon	Weibull
2	Pareto	Lognormal	Double Pareto	Pareto
3	Double Pareto	Yule-Simon	Lognormal	
4	Lognormal	Weibull	Weibull	
5	Weibull	Pareto		

[1] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, I. Turnu, On the distribution of bugs in the Eclipse system, IEEE Trans. Softw. Eng. 37 (2011) no. 6, 872--877.

- [2] T. Galinac Grbac, D. Huljenić, On the Probability Distribution of Faults in Complex Software Systems, Information and Software Technology 58 (2015), 250-258.
- [3] H. Zhang, On the distribution of software faults, IEEE Trans. Softw. Eng. 34 (2008) no. 2, 301-302.

Distributions fit – R²

Evolution of Yule-Simon distribution

<u>Conclusion</u>

- Yule Simon gives the best fit for all analysed projects
- Yule Simon is similar for projects in system evolution
- But, there are differences betwen parameters in different environments (JDT and PDE projects – Open source Eclipse projects)
- We can reuse Y-S but only between releases in system evolution
- Fitting Y-S with p0 (number of modules with no faults) from the data and p0 not from the data gives almost the same parameters (similarity up to 2 decimal places)
- In environment where there is a lot of software units with no faults Pareto distribution is almost as good as Yule Simon because the tail starts close to '0'.
- Simulations aiming to find underlying distributions for generative models and finding simulation model of software fault-behaviour in network over time
- Next step we want to find a model based on Yule process that can explain evolution of faults and other system properties of lage complex systems

COST ACROSS 2nd Summer School, May 27-31, Opatija, Croa Autonomous Control for Reliable Future Networks and Services

