
 Lund, November 16, 2015.

Tihana Galinac Grbac

University of Rijeka

 Motivation
◦ New development trends (IoT, service compositions)

◦ Quality of Service/Experience Demands

◦ Software (Development) Technologies for Complex
Software Systems

 Modeling software behaviour
◦ Empirical study on complex software systems

behavour

◦ Structure investigation

◦ Modelling approaches

 SEIP Lab environment for research

 More and more software
systems tend to evolve towards
complex software systems (e.g.
IoS) and systems of systems
(SoS)

 Interconnection of peripheral
systems over distributed
network into system of systems
(IoT)

 Future: Communicating software systems
distributed over the network, autonomously
managed
◦ Networks of networks, Systems of systems,

◦ Interconnected by Internet network

 Software services realized as service chains
ad-hoc established per each user or group of
users

 Currently software and systems are staticaly
configured and all software technologies are
supporting such statically configured systems

 We need better abstractions that would enable
and guide dynamic configuration of systems
◦ Need for autonomous system control

 High level of expertise is needed to develop
such systems
 Concurrency, interoperability, scalability, reliability,

security

 How to model complex software system
behaviour?
◦ fault and failure?

◦ growth and scale?

◦ performance?

 How to better suport software developers
developing ‘new software systems’?

 Aiming to develop autonomous QoS/QoE
solution for complex software systems

 2007-2013 New architectures and protocols in
converged telecommunication networks, Croatian
Ministry of Science, Education and Sports

 2012 - 2016 Behavioral Types for large-scale
reliable systems, COST Action EU project

 2013 – 2017 Autonomous Control for a Reliable
Internet of Services, COST Action EU project

 2013 – 2016 Analysis and innovative approaches
to development, management and application of
complex software systems, University of Rijeka

 2015 – 2018 EVOSOFT: Evolving software
systems: analysis and innovative approaches for
smart management, Croatian Science Foundation.

 Software engineering comunity has long time
ago identified importance of software structure
on QoS attributes

 The whole software system design phase is
devoted to careful selection and examination of
software structure influence on software quality

 Well planed and designed software is
precondition for achieving Quality of Service
(Telecom example)

 How we can automate part of that process and
enable runtime software reconfiguration?

 Understand structure and dynamics of
networks, software networks and their
influence on Quality of Service (QoS)/Quality of
Experience (QoE) attributes.

 Could software structure be
used as tool for modeling
software behaviour?

 Number of levels of
abstraction

 Global properties of system
and local properties
describing component
behaviour

 Imposible to derive simple
rules from local properties
towards global properties*

*Source: Complex software systems : Formalization and Applications -
Work done in EU project GENNETTEC: GENetic NeTworks: Emergence and Complexity

System and
system

components

 Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.

 Aim 2. To define structural dependencies
between various empirical principles.

 Aim 3. To define formal models and
innovative approaches that would enable
accurate modeling of fault distributions and
smart quality management of EVOSOFT
systems.

 Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.
◦ Empirical Fault distributions - Pareto principle

◦ Empirical Fault distributions - Pareto distribution

◦ Investigate effects of modifiations, reuse,
equilibration stage

◦ Establish link to research on open communities

 1984: V.R. Basili and B.T. Perricone, ”Software Errors and
Complexity: an Empirical Investigation,” Commun. ACM.

 2000: N.E. Fenton and N. Ohlsson. ”Quantitative Analysis
of Faults and Failures in a Complex Software System,”
IEEE Trans. Softw. Eng.

 2007: C. Andersson and P. Runeson, ”A Replicated
Quantitative Analysis of Fault Distributions in Complex
Software Systems,” IEEE Trans. Softw. Eng.

 2013: T. Galinac Grbac, P. Runeson, D. Huljenić, A second
replicated quantitative analysis of fault distributions in
complex software systems, IEEE Trans. Softw. Eng.

1. Pareto principle of fault
distributions

2. Persistance of faults
3. Effects of module size and

complexity on fault proneness
4. Quality in terms of fault

densities

Accumulated percentage of the number of faults in the system
test when modules are ordered with respect to the number of

faults in the system test and the function test.

 Pareto principle is clearly confirmed

 Modules identified to be fault-prone in one
phase tend to be so in subsequent phases

 Size related predictors are not given any support
for being good enough to identify fault-prone
modules

 Fault density across releases and environments is
of the same magnitude, but still varies a lot with
factors not under control in the current studies

 All such principles ultimately depend on the
underlying probability distribution of faults in a
software system.

 However, the fulfillment of a certain principle does
not determine the probability distribution uniquely.
◦ there are several distributions that would result in the

Pareto principle.

 empirical evidence in favor of some principle does
not imply information on the probability
distribution, and, indeed, our knowledge on the
probability distribution of faults in software systems
is still quite limited.

 Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.
◦ Empirical Fault distributions - Pareto principle

◦ Empirical Fault distributions - Pareto distribution

◦ Investigate effects of modifiations, reuse,
equilibrium stage

◦ Establish link to research on open communities

 2008: H. Zhang, On the distribution of software
faults, IEEE Trans. Softw. Eng.

 2011: G. Concas, M. Marchesi, A. Murgia, R.
Tonelli, I. Turnu, On the distribution of bugs in
the Eclipse system, IEEE Trans. Softw. Eng.

 2015: T. Galinac Grbac, D. Huljenic:
On the probability distribution of faults in
complex software systems. Information &
Software Technology

Nonlinear regression fit for Pareto, double
Pareto, Weibull and Lognormal distribution

Nonlinear regression fit for Yule
Simone with and without a
priori estimate for p0 from data
for random variable X counting
testing faults

Galinac Grbac 2015 Concas et al 2011 Zhang 2007

 Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.
◦ Empirical Fault distributions - Pareto principle

◦ Empirical Fault distributions - Pareto distribution

◦ Investigate effects of modifiations, reuse,
equilibrium stage

◦ Establish link to research on open communities

 1997 Thomas, W. M., Delis, A., Basili, V. R. An analysis of errors in a
reuse-oriented development environment. J. Syst. Softw.

 2002 Ostrand T. J., Weyuker, E.J., The Distribution of faults in a large
industrial software system. ACM SIGSOFT Softw. Eng. Notes.

 2005 Selby,W., Enabling reuse-based software development of large-
scale systems. IEEE Trans.Softw. Eng.

 2008 Mohagheghi, P., Conradi, R., An empirical investigation of
software reuse benefits in a large telecom product. ACM Trans. Softw.
Eng. Method.

 All complex systems become complex over the sequence of evolution

 Evolving software system implies high reuse

 One possible explanation for the difference is that the systems have
different levels of reuse

 Our approach would be to compare fault behaviour with respect to
system modifications and reuse.

 2009 Hatton, L., Power-Law Distributions of Component
Size in General Software Systems. IEEE Trans. Softw. Eng.

 One possible explanation for the difference is that the
systems may be in a different stage of equilibration.

 The software system may be considered as a discrete
complex system and studied as a physical system.

 It is in perfect equilibrium when there are no new faults
reported.

 At that stage the discrete conservation laws may be
imposed, just as in the continuous physical systems
(e.g. conservation of energy).

 Our approach would be to compare probability
distributions obtained by fitting to empirical fault
distributions but at different time intervals.

To determine how close to equilibrium a given software

 Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.
◦ Empirical Fault distributions - Pareto principle

◦ Empirical Fault distributions - Pareto distribution

◦ Investigate effects of modifiations, reuse,
equilibrium stage

◦ Establish link to research on open communities

 Problem: Linking software repositories
 Linking issues:
◦ No formal link

◦ no standardized

Procedure

◦ Huge data collection

Bias

◦ Huge diversity of reporting

and linking faults to modules

SDP dataset

SCM repositoryBT repository

SM tools

Bug – Commit

Linking

ISSUES:

2.1, 2.2,

4.1

ISSUES:

4.1,

5.1, 5.2

ISSUES:

2.1, 2.2,

3.1, 3.2

ISSUES:

6.1, 6.2, 6.3

ISSUES:

1.1, 6.1

–Systematic literature review

(36 papers from [2] + 35 / 136 / 4447)

–Exploratory study

(12 studenats, observer triangulation, 5 projects, 4 taska, 5 forms, 52 steps)

–Software metrics tools analysis

(iterativne assesment of 35 / 19 / 5 / 2 tools)

–Iterative development process

–Systematic dana collection comparison

(7 techniques, 5 projects, 37 releases)

 Mauša G., Galinac Grbac T., Dalbelo Bašić B. : “Software defect prediction with bug-code
analyzer – a data collection tool demo”, In: Proceedings of SoftCOM ’14, Split, Croatia, 2014

 Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.

 Aim 2. To define structural dependencies
between various empirical principles.

 Aim 3. To define formal models and
innovative approaches that would enable
accurate modelling of fault distributions and
smart quality management of EVOSOFT
systems.

• We have addressed four questions which lead
us to six hypotheses which are finally
grouped in following categories:
1. subgraph presence

2. structural evolution

3. effects of structural evolution on defects

4. motif stability in software structures

Petric J., Galinac Grbac T., Software structure evolution and relation to
system defectiveness, Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering EASE2014

• Present software as graph -> we developed

 rFind tool

• Determining subgraph frequencies and
motifs with graphic tools -> we used
mFinder/Kavosh

Class A {
 …
 B.methodB();
 C.methodC();
 …
}

Class B {
 …
 C.methodC();
 …
}

A

B C

EASE'14

• We showed few things:
• we observe that same set of subgraphs are

present in all versions of system evolution

• we proved that analyzed systems evolve
continuously and the change in their structure is
statistically significant

• defectiveness is correlated with some subgraphs

• motifs are shown to be consistent across system
versions

EASE'14

• We will go deeper in finding how defect on
class have influence on system structure

• We work on including different application
domains

• In future we will also include time-period of
software releases

• We will expand our rFind tool to work on
different languages

EASE'14

 H1: Structure of software distribution across
the logical nodes influences software system
elasticity

 Explanation: Distributed systems may be easier to
expand and scale then vertical systems from
performance and resource utilization cost
perspective

 H2: The way how application is distriuted may
provide some benefits for easier dynamic
resource scaling

 Web page: http://elaclo.com/

Acknowledgements: The work presented in this paper is supported by COST action
1304 Autonomous Control of Reliable Internet of Services (ACROSS) and the
research grant 13.09.2.2.16 from University of Rijeka, Croatia

http://elaclo.com/

 Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.

 Aim 2. To define structural dependencies
between various empirical principles.

 Aim 3. To define formal models and
innovative approaches that would enable
accurate modeling of fault distributions and
smart quality management of EVOSOFT
systems.

 As computing moves from the data-processing
era to the communication era, we need to
codify the structure of communication to
support the development of reliable
communication-oriented software

 Data types – used to staticaly prevent
operations from ‘going wrong’

 Is it possible to encode as types the
communication structure of modern computer
systems and statically verify behavioural
properties about them?

 Scribble programming language allows
certification of global protocol interaction and
projection onto local protocol implementation.

 tools for editing, verifying and projecting,
numerous libraries that allow its integration
with some general
purpose languages such are java or python.

 We have established

experimental

Environment:
◦ Cloud environment

◦ SDN network

◦ Reconfiguration
tools

◦ Our data collection
and analysis tools

