

Analyzing Incoming Workload in Cloud Business Services

SoftCOM 2015

<u> Tihana Galinac Grbac</u>

Faculty of Engineering, University of Rijeka, Croatia tihana.galinac@riteh.hr

Nikola Tanković, dipl.ing.

Superius d.o.o. Pula, Croatia <u>nikola.tankovic@superius.co</u>

Nikola Bogunović, Mario Žagar

Faculty of Electrical Engineering and Computing, Zagreb, Croatia <u>nikola.bogunovic@fer.hr</u> mario.zagar@fer.hr

Problem domain

Problem statement

Cloud Business Service

- An interactive business software service adapted for usage over Internet
- "Pay-as-you-grow" model offers costs savings by applying software elasticity of business service
- If service is composed of multiple web services, software distribution plays an important role [Tankovic et al. 2015]
- To apply optimal software distribution, one needs to understand and continuously monitor incoming workload

Incoming Workload

Analyzed dataset

Superius ECR (Electronic Cash Register)

- Cloud business service used by 3000+ clients in Croatia and Slovenia
- Collected every service request over a period of 45 days

Incoming workload definition

Time-series of incoming requests

- typically time series whose values represent unique request arrivals on time intervals
- typical business service workload reveals daily patterns

Forecast analysis

Applied well-known algorithms:

- ARIMA, tBATS and ANN (Artificial Neural Networks)
- ANN yields positive results (speed vs. precision) for modeling non-linear relationships

Workload Distribution Analysis

- We analyzed incoming interarrival times distribution (time between consequtive requests)
- Closest fit was a *log-normal* distribution
- Can be explained due to large amount of customers (independent sources of events)
- We examined the dynamic nature of this distribution (its change over time and service types)

Workload Distribution Analysis

Non-uniform distribution during the day

Workload Distribution Analysis (2)

Each service has different distribution

Workload Distribution Analysis

Log-normal fit parameters throughout the day

Proposal: QoS controller

- Automate this whole process
- A software module for continuous knowledge generation on incoming workload
- This module can be used for:
 - admission control managing variability of workload
 - forecasting deducing future workloads
 - capacity planning scheduling future infrastructure requirements (e.g. number of virtual machines)

Key components

- Workload analysis (continuous)
- Knowledge base (models and forecasts on intensity and distribution)
- Web service topology database (holds current deployment description: infrastructure, services and their dependencies)
- Capacity and Deployment Execution (responsible for scaling infrastructure)

P SlaClo

Web page: <u>http://elaclo.com/</u>

Acknowledgements: The work presented in this paper is supported by COST action 1304 Autonomous Control of Reliable Internet of Services (ACROSS) and the research grant 13.09.2.2.16 from University of Rijeka, Croatia

Thank you!

SoftCOM 2015

superius

