Tihana Galinac Grbac
University of Rijeka

Systems Behaviour

-

&zgc

Motivation

New development trends (loT, service compositions)
Quality of Service
Software Technologies for Complex Software
Systems

Modeling software behaviour

Empirical study on complex software systems
behavour

Structure investigation
Modelling approaches

SEIP Lab environment for research

Key problems wnth software evolutlon

More and more software
systems tend to evolve towards
complex software systems (e.q.
l0S) and systems of systems
(SoS)

Interconnection of peripheral
systems over distributed
network into system of systems

(loT)

Application plane

SDN Application H

SDN Northband interfaces

Network Control plane

(e.g. REST API, Python API, Java API)

Northbound API

CF

CF CF

CF CF

IControl functions implemented in modules

Southbound API [e.g. Open Flow)

Global Network View

= Flow tables of SDN
evices,

= Topology of SDN device,
= Traffic statistics,

" Authorized third party
(ESCOs, municipalities...)

Internet

Utility Data Center

e o m ae

Southbound API j

SDN Device
pdate

SDN Device

Sou‘thh nd API

Revolution or evolutlon of software systems

Future: Communicating software systems
distributed over the network, autonomously
managed
Networks of networks, Systems of systems,
Interconnected by Internet network
Software services realized as service chains
ad-hoc established per each user or group of

USErs

Currently software and systems are staticaly
configured and all software technologies are
supporting such statically configured systems

We need better abstractions that would enable

and guide dynamic configuration of systems
Need for autonomous system control

High level of expertise is needed to develop

such systems

- Concurrency, interoperability, scalability, reliability,
security

Our motlvatlon |s' to study)

How to model system behaviour?

How to model fault and failure behavior of
complex software systems

I_
I_

ow to model system growth?
ow to better suport software developers

C

eveloping ‘new software systems’

Aiming to develop autonomous
QoS/QoE solution for complex
software systems

Cts:

2007-2013 New architectures and protocols in
converged telecommunication networks, Croatian
Ministry of Science, Education and Sports

2012 - 2016 Behavioral Types for large-scale
reliable systems, COST Action EU project

2013 - 2017 Autonomous Control for a Reliable
Internet of Services, COST Action EU project

2013 - 2016 Analysis and innovative approaches
to development, management and application of
complex software systems, University of Rijeka
2015 - 2018 EVOSOFT: Evolving software
systems. analysis and innovative approaches for
smart management, Croatian Science Foundation.

o . - E o . g _'s y ~ g RN S > 3 > : N - X e .
. {: ’,5:" - '.w.}.% L Y o ;."*‘f? R & s Rl » PP~ IR
> “‘{. T e i : 4~""/"%-Q b Y "; % p
4 > ! '-,\ ‘..‘\": - ‘c .‘> \:- _{"; 5. \’ e . N

&

~_.__-\. ~ W

Sx 0 et ke
Importance of Software Structure

» Software engineering comunity has lang time
ago identified importance of sqftware s&cucture
on QoS attHbutes e

» The whole s
devoted t ul Igma-rrd xammatlon of y

software structure influence.on are quglity

» Well planetanydemgned o}

e is
precondition for achlevm%Qﬁ_of Service .
(Telecom example)

» How we can automate part of that procoss and
enable runtlme software reconfiguration? K

‘i‘ S

| Our approach

Understand structure and dynamics of
networks, software networks and their
influence on Quality of Service (QoS)/Quality of
Experience (QoE) attributes.

Could software structure be
used as tool for modeling
software behaviour?

Complex -systems

System and
Number of levels of system
abstraction components

Global properties of system
and local properties
describing component
behaviour

Imposible to derive simple
rules from local properties
towards global properties*®

Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.

Aim 2. To define structural dependencies
between various empirical principles.

Aim 3. To define formal models and
innovative approaches that would enable
accurate modeling of fault distributions and
smart quality management of EVOSOFT
systems.

T A g

» Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.

» Aim 2. To define structural dependencies
between various empirical principles.

» Aim 3. To define formal models and
innovative approaches that would enable
accurate modelling of fault distributions and

smart quality management of EVOSOFT

systems.
LR "

Emplrlcal Faultdlst-rlbutlons
- Pareto principle

1984: V.R. Basili and B.T. Perricone, "Software Errors and
Complexity: an Empirical Investigation,” Commun. ACM.

2000: N.E. Fenton and N. Ohlsson. "Quantitative Analysis
of Faults and Failures in a Complex Software System,”
IEEE Trans. Softw. Eng.

2007: C. Andersson and P. Runeson, "A Replicated
Quantitative Analysis of Fault Distributions in Complex
Software Systems,” IEEE Trans. Softw. Eng.

2013: T. Galinac Grbac, P. Runeson, D. Huljenic, A second
replicated quantitative analysis of fault distributions in
complex software systems IEEE Trans. Softw Eng.

N] '
i{(\\ : z g
& - - = 2 MM
X - _ - P TS
\&\ - q ‘ s \& , "‘"“:.'r c

Pareto principle of fault
distributions

Persistance of faults

Effects of module size and
complexity on fault proneness

Quality in terms of fault

densities

4 W o

% of acc. faults in ST

Alberg dlagrams persistance of faults

100

a0

G

40

20t

D 1 1 1 T
0 20 40 60 a0 100
% of modules
100
— | Relns3
@ gl
=
n
= EB0f
i
g 40
L11]
LT
o 2ot
=
0

0 20

40

100 100 . .
Rel n+2
80} : sof
B0} | g0}
I
a0} : 40
20} 20 =
== =FT
0 - - - - 0 - - - -
0 20 40 60 80 100 0 20 40 60 80 100
% of modules % of modules
_____ _ 100 —
Rel n+4 -""'".tf }
a0} A
J.f
g0}
a0}
— 20 —
== =FT == =FT
L T D L L L T
60 g0 100 0 20 40 60 80 100
% of modules

% of modules

Pareto principle is clearly confirmed

Modules identified to be fault-prone in one
phase tend to be so in subsequent phases

Size related predictors are not given any support
for being good enough to identify fault-prone
modules

Fault density across releases and environments is
of the same magnitude, but still varies a lot with
factors not under control in the current studies

-

Conclusion

All such principles ultimately depend on the
underlying probability distribution of faults in a
software system.

However, the fulfillment of a certain principle does
not determine the probability distribution uniquely.
there are several distributions that would result in the
Pareto principle.
empirical evidence in favor of some principle does
not imply information on the probability
distribution, and, indeed, our knowledge on the
probability distribution of faults in software systems
is still quite limited.

Emplrlcal Fault dlstrlbutlons
- Pareto distribution
2008: H. Zhang, On the distribution of software
faults, IEEE Trans. Softw. Eng.
2011: G. Concas, M. Marchesi, A. Murgia, R.

Tonelli, I. Turnu, On the distribution of bugs in
the Eclipse system, IEEE Trans. Softw. Eng.

2015: T. Galinac Grbac, D. Huljenic:

On the probability distribution of faults in
complex software systems. Information &
Software Technology

Results of distributlons ﬂt

10" ¢ : :
10°F
= = '
Fat| Al
= =
A, =1
107F o 7
o Pldaia ; 5 0]
| === Double Pareto - | © PI data]
== 'Eﬁ eibull 1 i ' Yule-Simon (pp from data) -
L 1 - Yule-Si : t from dat: “
. - Pazeto | - --- 1 [—‘L 'IlTI'lIUTlI(:pIﬂI not .Dm. ad,j o
! 10" 10° 10° 10° 10°
x

10
Nonlinear regression fit for Pareto, double

Pareto, WelbuII and Lognormal dlstrlbutlon

Nonlinear regression fit for Yule
Slmone W|th and without a

Ranking the probability distributions with respect to theirr performance in the non-
linear regression fitting of the empircal samples for the random variable counting the
number of faults in a software module

Rank Galinac Grbac 2015 Concas et al 2011 Zhang 2007
1 Double Pareto Yule-5imon Weibull

2 Lognormal Double Pareto Pareto

3 Yule-5imon Lognormal -

4 Weibull Weibull -

5 Pareto — -

Compare probability distri

software system in different equilibration stages

2009 Hatton, L., Power-Law Distributions of Component Size in General
Software Systems. IEEE Trans. Softw. Eng.

One possible explanation for the difference is that the systems may be
in a different stage of equilibration.

The software system may be considered as a discrete complex system
and studied as a physical system.

It is in perfect equilibrium when there are no new faults reported.

At that stage the discrete conservation laws may be imposed, just as in
the continuous physical systems (e.g. conservation of energy).

Our approach would be to compare probability distributions obtained
by fitting to empirical fault distributions but at different time intervals.
To determine how close to equilibrium a given software system is, we
use the reliability growth models - The system is in equilibrium, when
the reliability curve stabilizes.

Linking issues: - -

No formal link

no standardized
Procedure

Huge data collection

Bug — Commlt
Linking

BT repository

Bias

Huge diversity of reporting -

and linking faults to modules

SDP dataset

/(SCM repository

N
ﬂ<:

7/
4
/
4

SM tools

—Systematic literature review
(36 papers from [2] + 35/ 136 / 4447)

—Exploratory study

(12 studenats, observer triangulation, 5 projects, 4

—Software metrics tools analysis
(iterativne assesment of 35 /19 /5 / 2 tools)

—Iterative development process

—Systematic dana collection comparison
(7 techniques, 5 projects, 37 releases)

BuCo Analyzer Tool Bugzilla

0

User

A4

Interface

= Core
/% Product T Interfaces

il

IT
External | |« =

T

/|

¥

Internal
Interfaces

>\§\ 'LOC Metrics
A %

-

ﬁ/(\ JHawk
0

Database

&\ ReLink

fle
system

Mausa G., Galinac Grbac T., Dalbelo Basi¢ B. : “Software defect prediction with bug-code
analyzer — a data coIIectlon tooI demo” In Proceedmgs of SoftCOM 14, Split, Croatla 2014

» Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.

» Aim 2. To define structural dependencies
between various empirical principles.

» Aim 3. To define formal models and
innovative approaches that would enable
accurate modelling of fault distributions and
smart quality management of EVOSOFT
systems.

"R

Aim 2 To define structural dependencies between various
empirical principles

We have addressed four questions which lead
us to six hypotheses which are finally
grouped in following categories:

subgraph presence

structural evolution

effects of structural evolution on defects

motif stability in software structures

Petric J., Galinac Grbac T., Software structure evolution and relation to
system defectiveness, Proceedings of the 18th International Conference on
Evaluation and Assessment |n Software Englneermg EASEZOM

= X . x T X
i
‘ ‘ . ‘ '{”VOT 5
7 “ A

N "

. =

L
el
€L

—— A

—

- -~ C. dllV e o u
== >3] = s G ; .
AL L= _' » 5 =3
T — = :

Th__P —=x =

~ s CE3E A AF
Approach to problem

Present software as graph -> we developed

Class A { Class B { rFind tOOI
B.methodB():
C.methodCJ): _(?:m‘“ho‘
}

determining subgraph frequencies and
motifs with graphic tools -> we used
mFinder/Kavosh

ANANANAN A
RS /N \ [\ AN

Conclusnon

We showed few things:
we observe that same set of subgraphs are
present in all versions of system evolution

we proved that analyzed systems evolve
continuously and the change in their structure is
statistically significant

defectiveness is correlated with some subgraphs

motifs are shown to be consistent across system
versions

uture work

We will go deeper in finding how defect on
class have influence on system structure

We work on including different application
domains

In future we will also include time-period of
software releases

We will expand our rFind tool to work on
different languages

» Aim 1. To replicate studies aiming to confirm
empirical principles proposed and used in
software engineering community and to
define solid base to ground new theories.

» Aim 2. To define structural dependencies
between various empirical principles.

» Aim 3. To define formal models and
innovative approaches that would enable
accurate modeling of fault distributions and

smart quality management of EVOSOFT

systems.
LR "

Structure and performance

Tankovic, N; Galinac Grbac, T; Truong, H-L.;
Dustdar, S: Transforming vertical Web
applications into Elastic Cloud Applications,
Proc. of IC2E 2015, 2015, Phoenix, USA.

H1: Structure of software distribution across the

logical nodes influences software system elasticity
Explanation. Distributed systems may be easier to expand
and scale then vertical systems from performance and
resource utilization cost perspective

H2: The way how application is distriuted may
provide some benefits for easier dynamic resource
scaHng

http://www.seiplab.riteh.uniri.hr/wp-content/uploads/2015/03/IC2E2015.pdf
http://www.seiplab.riteh.uniri.hr/wp-content/uploads/2015/03/IC2E2015.pdf

Tankovic, N; Galinac Grbac, T; Truong, H-L.; Dustdar, S: Transforming vertical \WWeb applications into
Elastic Cloud Applications, Proc. of IC2E 2015, 2015, Phoenix, USA.

J

Web page: http://elaclo.com/

Acknowledgements: The work presented in this paper is supported by COST action
1304 Autonomous Control of Reliable Internet of Services (ACROSS) and the
research grant 13.09.2.2.16 from University of Rijeka, Croatia

-

http://www.seiplab.riteh.uniri.hr/wp-content/uploads/2015/03/IC2E2015.pdf
http://www.seiplab.riteh.uniri.hr/wp-content/uploads/2015/03/IC2E2015.pdf
http://elaclo.com/

e Develop framework for autonomous application

transformation

e measurement model (End user and Cloud provider - scale)
e Autonomous decision model for application slicing and
deployment

e Run-time self-adaptation scaling and reconfiguration mechanism
e Provide more exact benefits on family of experiments

New programming abstactions and API’s for autonomous
decision model

e Tool development
e Scaling the tool to bigger applications
e Introduce more autimatization

e Flexibility in cloud provider selection and different PAYG models
adaptatlon
\{\

C("&“

Sessmn types for telecom services

Scribble programming language allows
certification of global protocol interaction and
projection onto local protocol implementation.
tools for editing, verifying and projecting,
numerous libraries that allow its integration
with some general

purpose languages such are java or python.
Acknowledgements: The work on this

problem is supported by COST action 1201 Projection Types
Behavioural Types for large-scale reliable . .. o
Systems (BETT)/) . @) (Toaror) cal Types
che?:ﬁjng _
|BPEL \|Java1 Python | [fngéis

\ £ S0 > ' ; & 5
k / ‘wbui & ;*v_ :\‘ "4- { 2\ “\
TR w“éé?ﬁ/ A §"
- B 2 = e 7 A N A
o . v - - » L

http://www.cost.eu/domains_actions/ict/Actions/IC1201
http://www.cost.eu/domains_actions/ict/Actions/IC1201
http://www.cost.eu/domains_actions/ict/Actions/IC1201
http://www.cost.eu/domains_actions/ict/Actions/IC1201
http://www.cost.eu/domains_actions/ict/Actions/IC1201
http://www.cost.eu/domains_actions/ict/Actions/IC1201
http://www.cost.eu/domains_actions/ict/Actions/IC1201

s

S——>

N

SEIPLAB@UNI

We have established
environment
Cloud environment 5

S . ,_;-{-
e =TT —
T > D

P ‘ﬂ

N
: 2
o v T \
) ‘ _) . 4
. . < P
b, 3

TH

SDN network

Reconfiguration
tools

Our data collection
and analysis tools

We would like to
colaborate on
this issues!

N

- Q) l. y -
= =2
e
software ... Unii i'[' InfoTrend / E‘i}z StuderttP.., Photos - .,

. sepp lab "?“ wE ¥ A=

hrzz

Hrvatska zaklada za znanost

e

-

£ Most Visited | | GettingStarted 3 LatestHeadines Korisno | . Apple | | Yahoo!

A

SEIP Lab Sofrware Engineering and

Tnformation Processing Laboratory

cocoskE

EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

Home News

Svc\u‘:n&!o R.poc:

Unhversit

Home Language

» B Hracski

Welcome to the web-site of the Software Engineering and Information Processing

Lab (SEIP Lab). We are group of interdisciplinary researchers with diverse
backgrounds within Department of Computer Engineering at Faculty of
Engineering, University of Rijeka.

— Software Engineering and Information Processing Lab (SEIP Lab) is established

in 2o, Its mission is the synergy of research and education in the field of

UNIVERSITY OF RIJEKA

Faculty of Engineering

software engineering and information processing. The research is motivated by
the collaboration with other research groups and the real problems and needs

through the collaboration projects with industry partners. Providing practical
experience and challenges, these collaboration projects with industry strongly
R support the education of young scientists and professionals in the field. Through
research, education and technology transfer, the SEIP Lab aims to become the

regional excellence center that produces scientists able to compete in the
European Research Area, and software professionals that would contribute to the
regional software development capability.

Auvtonomous Coniral for o Relioble Internet of Services

56 Visitors
owe 20144 o 2018

