

University of Rijeka FACULTY OF ENGINEERING

Software Defect Classification with a Variant of NSGA-II and Simple Voting Strategies

Emil Rubinić, Goran Mauša and Tihana Galinac Grbac {erubinic, gmausa, tgalinac}@riteh.hr

SEIPLAB: Software Engineering and Information Processing Laboratory

Motivation for this work

- Student project: Bug-Code analyser Buco tool
- Research project funded by Croatian Science Foundation:
 - Evolving Software Systems: Analysis and Innovative Approaches for Smart Management, EVOSOFT
 - <u>http://www.seiplab.riteh.uniri.hr/?page_id=712&lang=</u>
 <u>en</u>

Introduction

 Increase in software complexity results in huge verification space

- Finding faults at early stage is important!

- Can we build a good model based on software project datasets for early fault prediction?
 - Machine based learning algorithms do not provide good results for imbalanced datasets

Related work

- Genetic programing may provide a solution
 - Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE TEC 17(3), 368–386 (2013)
- Several approaches have been studied and AdaBoost.NC gives best performance
 - Wang, S., Yao, X. "Using Class Imbalance Learning for Software Defect Prediction," IEEE Transactions on Reliability, 62(2):434-443, June 2013

Experiment

Stages of the experiment

Data collection using Bug-Code Analyzer **BUCO** tool

http://www.seiplab.riteh.uniri.hr

- Datasets used in article
 - Eclipse Plug-in Development Environment (PDE)
 project versions 2.0 , 2.1 and 3.0

Version	Whole set				
	Attributes		FP	NFP	Total
	No.	Туре	(%)	(%)	No.
PDE _{2.0}	48	Integer Decimal	19%	81%	576
PDE _{2.1}			16%	84%	761
PDE _{3.0}			31%	69%	881

• Default task – binary classification

 File is classified as Fault Prone (FP) if contains at least one fault, otherwise it is Non fault Prone (NFP)

• Each version was randomly divided 50 times:

50% for training and 50% for test

Building a model for SDC

Matlab variant of NSGA-II (mNSGA-II)

- 97 decision variables:

 $X = [w_1, w_2, \dots, w_{48}, o_1, o_2, \dots, o_{47}, o_{48}, \varepsilon]$

a – dataset attribute; w – weight; o – arithmetical operator from {+, - , · , / } ; ε - noise

- If C>1 the file is classified as FP, otherwise it is NFP $C = [(w_1 \cdot a_1) \cdot o_1 \cdot (w_2 \cdot a_2) \cdot o_2 \dots (w_{48} \cdot a_{48})] \cdot o_{48} \cdot \varepsilon$

– Two objectives:

• Sensitivity (TPR) and Specificity (TNR):

– mNSGA-II minimizes multiple functions:

minimize(1 - TPR) minimize(1 - TNR)

- mNSGA-II settings:
 - 3 sub-populations of size 200
 - Algorithm runs for max . 100 generations
 - Each run returns one Pareto Approximated (PA) front

mNSGA-II results

- For evaluating evolved fronts trapezoidal numerical integration was used – hyperarea
 - Best fronts for $PDE_{2.0}$ (0.81 \pm 0.02)
 - Smallest dataset
 - ${\rm PDE}_{\rm 2.1}~(0.74\pm0.03)$ and ${\rm PDE}_{\rm 3.0}~(0.74\pm0.01)$ similar results
 - PDE_{3.0} is larger than PDE_{2.1} but more balanced

Making use of population

- For each mNSGA-II output majority voting
 - 1. Individuals on PA front (PF vote)
 - 2. Individuals on PA front *without individuals with TPR or TNR less than 0.5* (RPF vote)
 - 3. Final population (FP vote)
 - 4. Final population *without individuals with TPR or TNR rate than 0.5* (RFP vote)

Voting strategies results

Evaluation was made in terms of zenith point
 (z):

$$z = \sqrt{(1 - TPR)^2 + (1 - TNR)^2}$$

- TNR is greater than TPR in most tasks
 Dataset is imbalanced!
- RPF and RFP
 - More balanced and less dispersed results
- RFP-vote has produced best overall results

Conclusion and future work

- Use of entire final population together with removing border solutions can led to better model creation
 - Solutions in the middle region are more desirable

• Future work:

- In this study mNSGA-II is used, but there exist MOEAs which tends to create more solution on middle region
 - SPEA-II
- Explore other objective formulations (etc. AUC)
- Extending datasets

University of Rijeka FACULTY OF ENGINEERING

Questions ?