
Software Defined Networking Demands on

Software Technologies

T. Galinac Grbac*, C.M. Caba**, J. Soler **
* University of Rijeka/Faculty of Engineering, Rijeka, Croatia

** Technical University of Denmark/Networks Technology and Service Platforms, DTU Fotonik, Lyngby, Denmark

tihana.galinac@riteh.hr, {cosm, joss}fotonik.dtu.dk

Abstract - Software Defined Networking (SDN) is a

networking approach based on a centralized control plane

architecture with standardised interfaces between control

and data planes. SDN enables fast configuration and

reconfiguration of the network to enhance resource

utilization and service performances. This new approach

enables a more dynamic and flexible network, which may

adapt to user needs and application requirements. To this

end, systemized solutions must be implemented in network

software, aiming to provide secure network services that

meet the required service performance levels. In this paper,

we review this new approach to networking from an

architectural point of view, and identify and discuss some

critical quality issues that require new developments in

software technologies. These issues we discuss along with

use case scenarios. Here in this paper we aim to identify

challenges for further evolution of software technologies in

addressing problems of network evolution. Our view is

based on the need for strong integration of network and

software technologies, and therefore we establish the main

focus of the paper on discussing SDN demands on software

technologies. The main contribution is in categorization of

open research problems and presenting ideas and opening

new opportunities for future research.

I. INTRODUCTION

Software Defined Networking (SDN) is a paradigm
that is related to idea of offering the network resources to
end users as a service (NaaS) over an open Application
Programming Interface (API). In this paradigm, from the
network operator perspective, the key differential element
is to replace industrial standard Command Line Interface
(CLI) for managing directly network devices with an open
interface, which can be used to programmatically perform
device management. Today, we have two protocols
NETCONF [1], proposed by IETF, which provides
mechanisms to install, manipulate, and delete the
configuration of network devices, and Open Flow[2],
proposed by ONF, as communications interface between
the control and forwarding layers of an Software Defined
Network (SDN) architecture. Introduction of open
protocols enables faster evolution and interoperability
among equipment of different vendors. Thus, leads to an
idea of separating switching hardware and control logic as
is presented in Fig. 1.

In OSI layer two and layer three implementations of

the modern transmission networks there is a plethora of
control protocols allowing for autonomous switching and
routing of Internet traffic. Autonomous control is achieved
by their distributed communication relying on continuous
tracking of surrounding network topology. Thus
significant processing power of network equipment is
spent on spreading common topology view among these
network nodes (according to some research studies more
then 30%). Also, transmission overhead and link
utilization may represent also significant issue. With the
continuous trend of network scale, creating larger
transmission chains, this current autonomous control
approach becomes more and more inefficient and leading
to unacceptable performances and convergence time
exceeding conventional constraints. As network grows,
more and more centralized approaches to network
management are needed. The main problems identified are
with responsiveness, reliability and scalability. A
solution that is getting more and more attention nowadays
is introduction of aforementioned layering approach with
centralization of control logic. The aim of separating
control logic from the switching logic into two distinct
network planes is to decouple the forwarding and device
operating functions from the network control logic. This
new approach increases the efficiency in handling a
dynamic network, and provides better adaptation to
changing traffic patterns.

The idea of fully integrated network solution with
separation of control logic into separate layer from pure
hardware switching layer without logic, just based on
dynamically changing data table, is far away from
realization. Although, it looks simple it requires
significant virtualization of network management
activities and procedures that are not so simple in the
current state of the art. Therefore, an endeavor has to be
invested into simplification of existing network
management operations providing backward compatible,
easy to scale and performance wise solutions.

The aim of this paper is to introduce into concepts of
Software Defined Networking and explore and discuss
open research problems on SDN software technology. For
this purposes we survey work on SDN software
technologies and on concrete use cases we identify and
explain main open research problems in that area. Finally,
main contributions of the paper are in introducing new
ideas on future research that is to be considered in
developing of SDN software technologies. Identify applicable sponsor/s here. If no sponsors, delete this text

box.

mailto:tihana.galinac@riteh.hr

II. SDN ARCHITECTURE

The basic key elements of SDN are separation of

network control logic from network hardware operation

and simplification of network device logic. This enables

automatization of network management processes and

logic above the control layer, centralization of network

control logic, and openness of network resources through

open standards and to end users.

Figure 1 captures the overall SDN architecture, which

consists of three planes (layers): data plane, control plane

and application plane. The data plane comprises the

forwarding devices. At the control plane, the logic is

implemented in a software platform termed SDN

controller (SDNC). The SDNC’s interface towards Data

Plane is realized through the southbound API

(Application Platform Interface) [3], see Fig 1. The

SDNC platform contains a logical representation of the

underlying network resources, and several control

functions that implement operations and functions for the

network. The capabilities built into the network control

plane are exposed to the application plane through the

Northbound API that is SDNC’s interface for

communication between Application and Network

Control Plane. The applications, located in the application

plane, leverage the northbound interface to implement

higher layer service logic.

Figure 1. Overview of Software Defined Network Architecture

A. SDN Northbound Interfaces

The SDN northbound interfaces, as is defined in [3],
specifies the functions exposed by the SDN control plane,
for programming of SDN applications and services and it
is implemented as an Application Programing Interface
(API). There can be various implementations for the
northbound API, depending on the network control plane
and the requirements of the network services built on top
of it. Figure 1 shows some possibilities for such
implementations (e.g. REST, Java, etc.). These
implementations fall under three main categories:

 Controller APIs that use a general purpose

language (e.g. Java, C, Python).

 APIs based on web services (e.g. REST).

 APIs based on Domain Specific Languages

(DSL).

The first category contains the most common and used

APIs. They allow the developer to write new service
modules integrated in the controller platform (Figure 1).
The variety of languages depends on the implementation
language of the controller platform. Some examples of
controllers are: NOX in C++, POX in Python, Floodlight,
ONOS and OpenDaylight in [4], [5], [6], [7], [8]. The
northbound APIs in this category lead to tight coupling of
the services (control functions) with the controller
platform.

The second category of APIs is based on web services.
Some controllers offer a REST API through which
applications can get information about the state of the
network, and send control messages to the switches. This
type of APIs emphasizes simplicity and modularity: the
network services may be programmed in any language as
long as they comply with the REST interface. They are
well suited for integration with external platforms, using
service oriented architectures. The main disadvantage is
that it may be difficult to expose the full set of capabilities
of the control plane as REST APIs. While the control
plane and the southbound interface are generally event-
driven (network generated events), it is harder to
implement an event driven REST API thus to preserve the
same programming model towards the SDN applications.
There are efforts in the open source community to provide
event notifications through the northbound interface [6],
although this is challenging. The RESTCONF protocol [9]
tries to establish a standardized method for exposing the
control plane resources (e.g. devices, flows, etc.) to the
SDN applications using an event-driven paradigm
(including event notifications and remote procedure calls).

The third category of APIs is based on domain specific
languages. Their main purpose is to ease the task of
expressing network policies by using high level
abstractions. Examples of research work in this area are
Netcore, Frenetic, and Pyretic [10], [11]. A network
control plane that exposes such an API, takes as input a
policy describing the expected network behavior, and
compiles the policy into low level rules (e.g. Open Flow
entries) that are installed in the forwarding devices. This
programming model makes application development
easier by moving the complexity from the applications to

the control plane policy compiler. The policy compiler
ensures that the behavior enforced in the data plane is
correct and does not lead to inconsistent traffic treatment
(due to possible conflicting policies).

One of the challenges regarding the definition of
northbound APIs is choosing the correct level of
abstraction for the network resources exposed through the
APIs. If the abstractions are very low level, then the
application development becomes increasingly complex.
On the other hand, high level abstractions make
development easier but they may become less powerful
(i.e. decrease visibility and control over the resources).

B. Southbound Interface

The southbound interface defines the communication
between the network control plane and the data plane
(Figure 1). The OpenFlow (OF) protocol has been
standardized in 2009 and it is currently the most used
protocol implemented on the SDN southbound interface.
OF is based on abstraction of forwarding logic using flow
tables. Inside a forwarding device, the forwarding function
is performed based on the OF entries in one or several
flow tables (Figure 1). An OF entry is a match and action
tuple. The match part defines the headers to match against
the packets arriving at the forwarding device, while the
action part defines the actions to apply to the matching
packets. In its first version, OF had limited capabilities,
covering mostly Ethernet, IP, and transport headers [2]. In
later versions several features have been defined, making
OF more versatile:

 Pipe-line processing of packets using multiple
flow tables. This mechanism enables applying a
series of actions for a packet.

 Tunneling support using Multi-Protocol Label
Switching (MPLS)[12] and Provider Backbone
Bridge (PBB) [13].

 Support for IPv6.

Several other extensions have been defined for the OF
protocol in order to support circuit switched and optical
networks. While OF enables controlling the forwarding
behavior in the data plane and collecting statistics about
the network, it does not make it possible to configure the
devices. Examples of protocols that enable configuration
and management of devices are NETCONF, SNMP, and
OF-Config [1] [14] [15]. These protocols enable for
example configuration of operating parameters of the
devices, such as queues, ports, etc.

III. USE CASE SCENARIOS

Two exemplary case scenarios are chosen here to
illustrate the advantages provided by SDN in managing
current network services and infrastructures.

1. Network Slicing / Virtualization

A network infrastructure under the supervision of an

SDN controller (SDNC) can be “shared” by multiple

users without mutual knowledge or impact, creating de-

facto “virtual networks”. This is a likely solution for

“multitenant” operations where network infrastructure

resources can be dynamically allocated and modified

among the different tenants via the centralized and

programmatically control of the SDNC. While this type

of network “slicing” can be achieved by the physical

separation and control of ports and queues in the

forwarding devices, a more scalable and flexible solution

can be achieved if the SDNC becomes the manager for

tag-based (overlay) conventional virtual networks, i.e. by

managing VLAN (Ethernet) tags or MPLS labels.

2. Data Center & Virtual Infrastructure

This is very much exploited currently in different

commercial solutions targeting Datacenter (DC)

networks, where computer resources virtualization has

become the de-facto standard mechanism to maximize the

utilization of equipment and distributing its cost. DC

network topologies are based on massive tree structures

of servers rooted by common switches in share physical

collocated racks (i.e. TORs: Top of the Rack switches).

TORS are as well interconnected in tree architecture

towards gateways connecting to external networks. While

traditionally “leaf” nodes in these tree topologies were

mere hardware servers, in today virtualized environments

they are virtual machines (VMs), instantiated when and

where needed by virtualization hypervisors. These VMs,

in order to enable connectivity within the virtualized

network are linked via virtual switches, which can be

controlled by an external SDNC. This enables to create

overlay networks, as the ones mentioned previously,

within the DC to represent different tenants (customers)

or applications. DC network management challenges,

such as dynamic traffic migration (i.e. when copying or

migrating a VM from one physical server to another) or

inclusion-deletion to-from different virtual (overlay)

networks within the DC, become extraordinarily

simplified when based on a centralized-programmatic

SDNC operation, rather than a manual configuration-

reconfiguration from a human (fail-prone) manager.

IV. SOFTWARE TECHNOLOGIES

The introduction of network virtualization enabled
further development and flexibility of networking in cloud
environments. However, SDN aims to centralize network
control, thus it aims to softwarify network engineering
theory into network services offered to its users leading to
easier and more efficient network management. However,
numerous problems exists and still more work has to be
done to define network engineering theory that would be
ready for network softwarisation.

Here we aim to introduce some of the problems and
open areas for research but we are not aiming to review all
the state of the art in this field.

V. OPEN PROBLEMS

Movement to the new SDN paradigm, aiming to
softwerize the network, is full of challenges. There is a
growing body of research in that direction. Some well
established top journals have devoted a special issue to
SDN. There have been three HotSDN conferences with Identify applicable sponsor/s here. If no sponsors, delete this text

box.

continuously increasing number of papers submitted. A
new conference started on Software Defined 5G
Networks. Workshops are addressing particular topics in
SDN such is for example Workshop on Architectures and
programming paradigms for emerging 5G Networks.
Numerous papers have already been written and published
and number is continuously increasing. One of the biggest
concerns is how can software technologies help in this
migration and where we need their help. Main challenges
with network virtualization are addressed per each
identified use case scenario in [16]. Here in this paper we
aim to identify challenges for further evolution of software
technologies in addressing problems of network evolution.
We survey problems addressed by numerous authors on
SDN software technologies and discuss them here in
several categories. Also, important to note is that we are
not aiming to review all the existing literature on
challenges and provided solutions. Here we just describe
open problems and occasionally provide reference for
better illustration of problem.

First problem that we address here is the consistency

problem between the logical representation of the

network resources at the network control plane, and the

physical resources in data plane. This consistency

problem is associated with liveness properties. This

problem is twofold. If we strive to keep consistency then

we will sacrifice responsiveness and vice versa. A

consistent network model at the control plane requires

that well defined synchronization procedures are

executed frequently in order to update the network

control logical model with information from the data

plane. This leads to increased resource consumption at

the SDNC side and introduces delays on the control

channel, thus decreases the overall responsiveness at the

control plane. On the other hand, optimizations may

improve responsiveness but may also introduce

uncoordinated behavior that in the case of large network

complexities, is leading to a non-reliable system, with

routing loops and black holes. Optimizations as shortcuts

are not welcome solution in such complex systems.

System scaling is limited with distributed relationship

between logical and physical resources and maintaining

their mutual relationship is not trivial [17]. Software

technology research aims to identify set of representative

relations, that are easy to manage and maintain,

investigate specific trade-offs that are dependent on

controller implementations and to find alternative

mechanisms on delays or reliability. Consistency effect is

evaluated from different perspectives and vast amount of

software technologies has been proposed to address this

problem and still this is a hot research area widely

involving computer science and complex network theory.

To achieve high scalability, flexibility and availability it

is identified as mandatory to implement redundancy at

control plane. In [18] experimenting with different

topologies it is identified that one controller location is

often sufficient to responsiveness requirements but not

for fault tolerance requirements. Some researchers has

come with statement that the only possible way to secure

highly available but reliable platform is to introduce

redundancy and distribution of control logic. However, in

that scenario we introduce completely new branch of

problems dealing with synchronization and concurrency

issues while handling concurrent policy updates [19].

Here we face with full complexity of programming

network control function with high reliability and

availability demands while capable for executing

numerous concurrent processes for variety of different

users. Majority of knowledge in this domain has already

been collected within industry such is for example

Ericsson knowledge base developed in more than 40

years of evolution of AXE based telephone exchange that

in its AXE 810 version that implements control logic as

standalone node that is central in next generation

networks for handling control (signaling) of end user

traffic in resource network layer. This switch is central to

many core network implementations of Next Generation

Networks (see 3GPP standards) and is reliable, robust and

easy to scale solution. However, most of the solutions are

not implemented to be used at runtime as is required in

new network evolution phase (5G networks). The

synchronization and concurrency issues are big concern

of these networks. As communication is a central element

of these networks and aiming to softwarify network

engineering theory we may need to control harmonies

execution of numerous industries specific hardware

related policies and numerous interacting industry

standards. This is actually one of the biggest concerns of

further network evolution. For that reason we may need

new abstractions for structured communication - centered

programming and to specify and implement program

communication safe software. One promising example is

behavioural type theory that introduces new behaviuoral

types for describing interactions involving multiple peers

and that abstracts these interactions as a global scenario

[20], [21]. Message exchange among concurrently

running multiple peers are verified at global level thus

enabling independent certification of each party’s local

implementation if it is in correspondence to global

behaviour. Based on that theory a lot of interesting

approaches has been presented at workshop on

Programming Language Approaches to Communication

and Concurrency cEntric Systems (PLACES). One good

example is Scribble programming language [22] that

allows certification of global protocol interaction and

projection onto local protocol implementation. Except the

tools for editing, verifying and projecting, there is work

in progress of development of numerous libraries that

allow its integration with some general purpose languages

such are java or python.

In centrally controlled network architecture that is

continuously growing, its management becomes

extremely complex and security vulnerabilities becomes

more complex and error prone. Data integrity and

confidentiality for information exchange in a network

with dynamic policies require innovation in the area of

cryptographic algorithms or authentication certificates.

Some cyber security controls, that would be implemented

as part of software tehnology for next generation systems

such as access control, network isolation or monitoring

are areas under investigation.

Another problem is with central management of global

network view. This task requires huge amount of network

data to be effectively stored into database, restored and

up to date. Problem of storing of huge amount of data as

well as effective information capturing from this big data

volumes is a huge issue. One approach is usage of

hierarchy abstraction. In [23] proposal is to use

hierarchical policies that show positive performance

results.

Expression of configuration protocols such as Open Flow

and Netconf is limited. A numerous studies question their

flexibility to different configuration needs, and their

expression abilities in relation to the performance

requirements [24]. Here we have tight interaction

between telecommunication and computer science

profession in defining right abstractions that would

provide expressive protocol and its implementation

language for efficient, reliable but secure communication

between abstract network notation and physical

resources. There is continuous work in progress in

standardization of these protocols and its

implementations as well as identification of new avenues

for further evolution in configuration protocols and

languages.

Modeling abstractions, software organization at control

but also at device level may have significant influence of

service performance offered by SDN network. This is

especially interesting to observe in relation to system

potential to scale. For example, an earlier study show that

splitting of architecture in Mobile Switching Centre has

significantly degrade service performances and scaling

abilities, [25]. Software modelling methods have to be

revised with software dynamics in mind. A software

engineering modeling tool that aims to model how

software application with intensive dynamic scaling

requirements has to be distributed in respect optimized

resourse costs has been proposed by [26]. An object

oriented programming approach implementing type

system aiming to optimize resource usage costs by

governing software distribution within multicore systems

has been proposed in [27].

Architectures that rely on open standards and open source

code community benefit in terms of progressive

development and prototyping. Moreover, an integrated

view that is maintained among various industries through

open community turns out with positive interoperability

characteristics. However, there are numerous drawbacks.

Open community is good choice for simple prototyping

solutions without strict and formal rules, based on easy

and general purpose languages. But, in case of complex

system there are numerous studies that proved that human

factor should not be neglected. For example,

programming language Erlang contains some interesting

concepts that are developed assuming unreliable

software. The right balance between advanced software

technologies that human should consume while

developing software and software technologies that

accepts not perfect world has to be achieved. One way to

deal with this issue is to develop certification technology

for software packages that are to be deployed into

complex network that would be based on using built in

typecheckers.

The way how system evolves very much influence its

further ability to scale, further develop, maintain required

reliability levels, etc. Learing from existing complex

systems that evolved over decades may bring some

fruitful knowledge. Identification of software behaviour

and identification of autonomous modeling techniques

that could be easily implemented into network or

development environemnt may be used to introduce

discipline in SDN network in open source environment.

VI. CONLUSION

Software Defined Networks have been developed and
invented as new paradigm in telecommunication world but
it is highly based on computer science theories. Numerous
efforts that were invested within computer science field
developing theories in formal languages and verification
tools have finally show their full practical benefit.
Developing complex software systems such a modern
telecommunication networks become extremely
challenging task. Add hoc shortcutting engineering
solutions is not desirable any more but we should strive on
systematized solutions. The best known systematization
technology is governed by sound formalisms that are
implemented within technology that humans use to
engineer complex systems. In the SDN world the need for
systematization of existing network and traffic
engineering knowledge is evident. And this is still not
enough; we need this systemized knowledge packed in
nice formal packages that will be simple and easy to
integrate in complex system that we develop and use. For
this future step there is need for diverse skills and
competences, a huge experience and practice base of
engineering existing networks, theoretical sense for
knowledge systematization and representation in
meaningful way and again engineering knowledge to
apply systematized solutions in practice. Moreover,
expertise from different knowledge domains are identified
as needed. Just to mention a few, network and traffic
engineers, reliability engineers, computer scientist,
mathematicians, and complex network theoreticians.
Software technologies just have to be developed for new
networking paradigm used for developing complex
software systems and lot of efforts has to be invested prior
final solution. Here in this paper we survey key SDN
problems, demonstrate details on real use case examples
and based on that we identify main categories of existing
research in SDN software technology. Furthermore, we
open some new avenues by introducing some ideas for
future research in SDN software technology.

ACKNOWLEDGMENT

The work presented in this paper is supported by COST

action 1304 Autonomous Control for a Reliable Internet

of Services (ACROSS), COST action 1201 Behavioural

Types for Reliable Large Scale Systems (BETTY), the

research grant 13.09.2.2.16. from the University of

Rijeka, Croatia, and the research project project “SDN:

applicability and service possibilities” at DTU.

REFERENCES

[1] IETF NETCONF Network Configuration protocol, RFC 6241,

http://tools.ietf.org/html/rfc6241, retrieved on January 2015.

[2] ONF, Open Flow Switch Specification v 1.05.
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-
v1.5.0.noipr.pdf retrieved on January 2015.

[3] ONF SDN Architecture, Issue 1 (June 2014).
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf,
retrieved on January 2015.

[4] http://www.noxrepo.org/ , accessed on January 2015.

[5] http://www.projectfloodlight.org/floodlight/ , accessed January
2015.

[6] http://www.opendaylight.org/ , accessed January 2015

[7] P. Berde, et al., “ONOS: Towards and Open, Distributed SDN
OS”, Proc. HotSDN , 2014.

[8] http://onosproject.org/, accesed on January 2015

[9] Bierman et alt., ETF RESTCONF Protocol,
http://www.ietf.org/archive/id/draft-bierman-netconf-restconf-
04.txt, retrieved on January 2015.

[10] http://www.frenetic-lang.org/ , accessed January 2015,

[11] C. Monsanto, N. Foster, R. Harrison, D. Walker, “A compiler and
run-time system for network programming languages”, ACM
SIGPLAN Notices - POPL '12 , January 2012.

[12] Rosen et alt. IETF RFC 3031- Multiprotocol Label Switching
Architecture. http://tools.ietf.org/html/rfc3031 , retrieved on
January 2015.

[13] IEEE802.1Qay- Provider Backbone Bridge Traffic Engineering
http://www.ieee802.org/1/pages/802.1ay.html , accessed on
January 2015

[14] Harrington et. al. IETF RFC 3411 – An Architecture for
Describing Sinple Network Management Protocol Management
Frameworks http://tools.ietf.org/html/rfc3411, retrieved on
January 2015.

[15] ONF OF-Config v1.2. OpenFlow Management and Configuration
Protocol.https://www.opennetworking.org/images/stories/downloa
ds/sdn-resources/onf-specifications/openflow-config/of-config-
1.2.pdf , retrieved on January 2015.

[16] Network Functions Virtualization (NFV) Use Cases, ETSI GS
NFV 001 v1.1.1 (2013-10).
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_6
0/gs_NFV001v010101p.pdf , retrieved on January 2015.

[17] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann.
“Logically centralized?: state distribution trade-offs in software
defined networks,” In Proc. of the first workshop on Hot topics in
software defined networks (HotSDN '12), ACM, 2012, pp. 1-6,
2012.

[18] B. Heller, R. Sherwood, and N. McKeown. “The controller
placement problem”, In Proceedings of the first workshop on Hot
topics in software defined networks (HotSDN '12). ACM, New
York, NY, USA, pp. 7-12, 2012.

[19] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “Software
transactional networking: concurrent and consistent policy
composition,” In Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking (HotSDN
'13), ACM, New York, NY, USA, pp. 1-6, 2013.

[20] Kohei Honda, Nobuko Yoshida, and Marco Carbone, “Multiparty
asynchronous session types”, In Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL '08). ACM, New York, NY,
USA, pp. 273-284, 2008.

[21] Lorenzo Bettini, et al. Global Progress in Dynamically Interleaved
Multiparty Sessions. In Proc. of Conference on Concurrency
Theory (CONCUR 2008), volume 5201 of LNCS, pp. 418–433.
Springer, 2008.

[22] Scribble programing languague, http://www.scribble.org/,
Accessed Feb 2015.

[23] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S.
Krishnamurthi. Hierarchical policies for software defined
networks. In Proc. of the first workshop on Hot topics in software
defined networks (HotSDN '12). ACM, New York, USA, 37-42,
2012.

[24] A.Voellmy, H. Kim, and N. Feamster. “Procera: a language for
high-level reactive network control,” In Proceedings of the first
workshop on Hot topics in software defined networks (HotSDN
'12). ACM, New York, NY, USA, pp. 43-48, 2012.

[25] Galinac, Tihana, Huljenić, Darko; Influence on basic call set-up
by integration of packet and circuit switched Core Network
In Proceedings of the International Conference on Computers in
Telecommunications of the 25th International Convention
(MIPRO 2002) Opatija, Croatia, 2002.

[26] Tanković, Nikola, Galinac Grbac, Tihana; Truong, Hong-Linh;
Dustdar, Schahram, Transforming vertical web applications into
elastic cloud applications In Proc. of International Conference on
Cloud Engineering 2015, Phoneix, USA. 2015.

[27] Franco, Juliana, Drossopoulou Sophia; Behavioural types for non-
uniform memory accesses, In Proc. Of Programming Language
Approaches to Communication and Concurrency cEntric System,
2015, London, UK, 2015.

http://tools.ietf.org/html/rfc6241
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
http://www.noxrepo.org/
http://www.projectfloodlight.org/floodlight/
http://www.opendaylight.org/
http://onosproject.org/
http://www.ietf.org/archive/id/draft-bierman-netconf-restconf-04.txt
http://www.ietf.org/archive/id/draft-bierman-netconf-restconf-04.txt
http://www.frenetic-lang.org/
http://tools.ietf.org/html/rfc3031
http://www.ieee802.org/1/pages/802.1ay.html
http://tools.ietf.org/html/rfc3411
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.scribble.org/

