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Software Defect Prediction (SDP) deals with localization of potentially faulty areas of the source code. Classification models are 
the main tool for performing the prediction and the search for a model of utmost performance is an ongoing activity. This paper 
explores the performance of Rotation Forest classification algorithm in the SDP problem domain. Rotation Forest is a novel 
algorithm that exhibited excellent performance in several studies. However, it was not systematically used in the SDP. 
Furthermore, it is very important to perform the case studies in various contexts. This study uses 5 subsequent releases of 
Eclipse JDT as the objects of the analysis. The performance evaluation is based on comparison with two other, known 
classification models that exhibited very good performance so far. The results of our case study concur with other studies that 
recognize the Rotation forest to be the state of the art classification algorithm. 

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management—Software quality assurance (SQA); H.2.8 
[Information Systems]: Database Applications—Data mining 
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1. INTRODUCTION 

Software Defect Prediction (SDP) is an evolving research area that aims to improve the software 
quality assurance activities. It is in search for an effective predictive model that could lead the testing 
resource allocation towards the software modules that are more likely to contain defects. Empirical 
studies proved that there is certain regularity in defect distribution. It follows the Pareto principle, 
meaning that minority of source code (20%) is responsible for majority of defects (80%) [Galinac Grbac 
et al., 2013]. Many classification models have been used for SDP, with various outcomes. It is 
important to emphasize that the context of data source may be the cause of inconsistent results in 
software engineering research [Galinac Grbac and Huljenić, 2014]. Therefore, we need to perform a 
large number of systematically defined case studies with as much data from various domains in order 
to achieve generalizability of results.  
In this paper, we examine the potential of Rotation Forest (RttFor), a novel classification model. The 
RttFor achieved some promising results in classification problem domain [Rodríguez et al., 2006]. 
However, its potential is scarcely examined in the SDP research area. That is why we compare its 
performances with two known classification models, the Logistic Regression (LogReg) and the Random 
Forest (RndFor). LogReg is an example of a reliable classification model of good performance in many 
application domains. RndFor is another novel approach that showed promising results and in many 
cases outperformed other classification models [Lessmann et al., 2008]. RttFor is similar to RndFor 
because it uses a number of decision trees to make the prediction. But unlike RndFor, each decision 
tree uses all the features. Furthermore, it weights each feature using the principal component 
analysis (PCA) method upon randomly selected groups of input features. That way it maximizes the 
variance between features and achieves better performance [Amasyali and Ersoy, 2014].  
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We perform the comparison in the context of five subsequent releases of an open source projects for 
java development, the Eclipse JDT. The obtained results are evaluated in terms of Accuracy, TPR, 
FPR, F-measure, Kappa statistics and AUC. The paired T-test indicated RttFor to perform equally 
good or significantly better than the other two classifiers in all the evaluation metrics, with the 
exception of TPR. Our findings are consistent with other few case studies that obtained favorable 
results when comparing RttFor to other classification and even regression models [Pardo et al., 2013]. 
The structure of this paper is as following: Section 2 provides the promising results achieved by 
RttFor in classification domain that motivated this study. Section 3 presents the algorithms of the 3 
classifiers we compare in more details. The description of our case study   is given in section 4. The 
results are presented and their threats to validity are examined in section 5. Section 6 finally gives 
the conclusion. 

2. BACKGROUND 

There are some case studies that achieved promising results when using RttFor algorithm. The 
authors of the algorithm compared it with Bagging, AdaBoost and RndFor on a random selection of 33 
benchmark data sets from UCI machine learning repository [Rodríguez et al., 2006]. These datasets 
contained from 4 up to 69 features, from 57 up to 20,000 instances and from 2 to 26 distinct classes. 
Their results indicated that the RttFor outperformed other algorithms, achieving 84 wins and only 2 
loses in paired comparison of significant differences between models’ accuracy levels. Amasyali and 
Ersoy [Amasyali and Ersoy, 2014] performed the comparison of Bagging, Random Subspaces, RndFor 
and RttFor algorithm on 43 datasets from the same UCI repository in terms of accuracy. Each 
algorithm was used with and without the addition of new, artificially combined features. RttFor with 
the addition of new features outperformed all the other algorithms and RttFor without the addition of 
new features was the second best. 
There are several studies that used the RttFor for different classification purposes, like image 
classification [Kuncheva et al., 2010], [Xia et al., 2014], [Zhang, 2013]. There, the RttFor was 
outperformed by Random Subspace with Support Vector Machine (SVM) and several other algorithms 
in classification of brain images obtained through functional magnetic resonance imaging [Kuncheva 
et al., 2010]. The impact of several feature transformation methods was analyzed in the RttFor: PCA 
that is the default method, maximum noise fraction, independent component analysis and local Fisher 
discriminant analysis [Xia et al., 2014]. Xia et al. also compared each of these variations of RndFor to 
CART, Bagging, AdaBoost, SVM and LogReg via Variable Splitting and Augmented Lagrangian 
(LORSAL) in hyperspectral remote sensing image classification. The default variant of RttFor with 
PCA outperformed others in terms of accuracy. An interesting cascade classifier ensemble is created 
by Zhang [Zhang, 2013]. He combined k-Nearest Neighbor (kNN), SVM, Multi-Layer Perceptrons 
(MLP) and RndFor as the first cascade and RttFor with MLP as the second cascade. Each stage gives 
a majority vote that is supposed to be above a predefined threshold value. The second cascade is 
targeting the rejected instances from previous cascade, for which the majority vote was not above that 
threshold, to further insure the confidence. They achieved a great improvement in reducing the rate of 
rejected instances and, therefore, minimizing the misclassification cost. All of these studies used the 
RttFor because its performance was reported to be very good comparing to other classifiers. 
To the best of our knowledge, the only use of RttFor in the SDP domain was done by [Palivela et al., 
2013]. However, it remained unexplained what is their source of data, what information is stored in it, 
how many features and how many instances does it contain. They compared several classification 
algorithms: C4.5, SMO, RttFor, Bagging, AdaBoost M1, RndFor and DBScan, evaluated the 
performance in terms of 8 different evaluation metrics: Accuracy, True Positive rate, False Positive 
rate, Recall, F-measure, Kappa statistics and AUC, but lacked the comparison of statistical 
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significance. Nevertheless, their results also indicated the RttFor as the classifier of utmost 
performance. 

3. CLASSIFICATION MODELS 

All the algorithms involve building models iteratively upon a training set. The training set contains 
multiple independent variables and 1 dependent variable that we want to predict. The model is 
trained on this dataset and then it is evaluated on previously unseen data, i.e. the testing set. In 
classification domain, the dependent variable is discrete, unlike in regression domain, where it is 
continuous. In our case, the dependent variable is a binary class, where 1 indicates the presence of a 
bug and 0 indicates the absence of bugs and the independent variables are source code features. We 
present the algorithms of all the three classification models in the remainder of this section. 

3.1 Logistic Regression 

LogReg is a statistical classifier. It is used in various classification problem domains and it is 
renowned as a robust method. That quality makes this classification algorithm appealing to software 
engineering domain where data are rarely normally distributed, usually are skewed and contain 
outliers and missing values. The multivariate LogReg is used for classification problem with multiple 
independent variables [Tabachnick and Fidell, 2001]. For a training set that consists of a set of 
features X of size (N x n), with N being the number of instances and n being the number of features 
mk (with 1 ≤ k ≤ n), and of dependent variable Y of size n as the binary class vector, the LogReg 
classification algorithm can be explained in these steps: 
 
(1) Initiate the search of regression coefficients Ck, where C0 is the intercept and Ck are the weights 

for each feature mk and build the classification model ܻ as: 

      ܻሺ݉ଵ, ݉ଶ, … ݉ሻ ൌ
బశభభశڮశ

ଵାబశభభశڮశ
      ሺ1ሻ 

(2) Evaluate the model by assessing the natural log likelihood (NLL) between the actual ( ܻ) and the 
predicted ( ఫܻሻ outcomes for each j-th instance (with 1 ≤  j ≤ N)  as: 

ܮܮܰ ൌ ∑ ൣ ܻ ln൫ ఫܻ൯  ሺ1 െ ܻሻ݈݊ሺ1 െ ܻሻ൧ே
ୀଵ      ሺ2ሻ 

(3) Optimize the coefficients using maximum likelihood procedure iteratively, until convergence of 
coefficients is achieved 

(4) The output of classification is the probability that a given instance belongs to the class ఫܻ = 1 

3.2 Random Forest 

RndFor is an ensemble classifier, proposed by [Breiman, 2001], that takes advantage of randomness 
induced by splitting the instances and features for multiple classifiers. Decision trees are the 
classifiers and each of them receives a different training subset. The final classification output is the 
majority’s decision of all the trees. That way, generalization error is reduced, impact of outliers and 
noise is minimized and model’s performance is improved. For a training set that is defined according 
to previous Subsection 3.1 the RndFor classification algorithm is presented in Figure 1a. With Ti 
indicating an arbitrary tree and K as the number of trees, it contains following steps: 

 

(1) Assign each tree Ti with a subset of features of size between 1 and √݊ from the training set X 

(2) Take a bootstrap sample of instances from the training set (2/3 for training and 1/3 for error 
estimation) 
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(3) Iteratively grow the trees using CART methodology without pruning, selecting the best feature 
and splitting the node into two daughters 

(4) Average the tree’s error testing the subset of trees on mutual error estimation subset and 
testing each tree individually on its own error estimation subset 

(5) The output of classification is the majority vote of all trees in the forest 
 

     

 Fig. 1a Random Forest Algorithm                         Fig. 1b Rotation Forest Algorithm 

3.3 Rotation Forest 

The RttFor is a novel ensemble classifier algorithm, proposed by [Rodríguez et al., 2006]. It is an 
algorithm that involves randomized PCA performed upon a selection of features and instances of the 
training set before building the decision trees. For a training set that is defined according to previous 
Subsection 3.1, the RttFor classification algorithm is presented in Figure 1b. With Si indicating an 
arbitrary subset of training set and K as the total number of subsets, it contains following steps: 

 
(1) Split the features of training set X into K non-overlapping subsets of equal size M=n/K 
(2) From each subset Si, randomly remove 25% of instances using bootstrap method to ensure the 

coefficients obtained by PCA are different for each tree 
(3) Run PCA on the remaining 75% of the subset and obtain ai,j coefficients for each i-th subset and j-

th feature inside the subset 



  Neural Modeling Of Flow Rendering Effectiveness     •     1:5 

 

  
 ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

(4) Organize the ai,j coefficients in a sparse rotation matrix and rearrange the coefficients so that they 
match the positions of the n features they were build upon to obtain Rka 

(5) Repeat the procedure in steps 1 – 4 for each tree in the RttFor and build the tree upon training set 
X · Rka, Y 

(6) The output of classification in the majority vote of all the trees in the forest 

4. CASE STUDY 

The goal of this case study is to evaluate the performance of RttFor in SDP. We used LogReg, a robust 
and trustworthy statistical classifier used in many other domains and the RndFor, a newer ensemble 
algorithm that is achieving excellent results in SDP, as the basis of our comparison. Our research 
question (RQ) is how well does RttFor perform in SDP when compared to LogReg and RndFor? 

4.1 Datasets 

We collected datasets from five consecutive releases of Eclipse JDT project: 2.0, 2.1, 3.0, 3.1 and 3.2. 
Eclipse is an integrated development environment (IDE), mostly written in Java, but offering a wide 
range of programming languages for development. The Java development tools (JDT) is one of the 
largest development environments and, due to publicly available source code management repository 
in GIT and bug tracking repository in Bugzilla, it is often analyzed in SDP research. The number of 
the source code files for each release of the JDT project and the ratio of NFPr and FPr files is given in 
Table I. 

Table I.  Eclipse Datasets 

Dataset 
Appearance 

Files NFpr Fpr 
JDT 2.0 2021 50.1% 49.9% 
JDT 2.1 2343 64.1% 35.9% 
JDT 3.0 2953 58.1% 41.9% 
JDT 3.1 3394 64.5% 35.5% 
JDT 3.2 1833 59.0% 41.0% 

 
We collected the data using Bug Code (BuCo) Analyzer tool, which we developed for this purposes 
[Mauša et al., 2014]. The data collection approach starts with the collection of fixed bugs of severity 
greater than trivial, for each of the analyzed releases of the JDT project. Then it performs the bug-
code linking on the file level of granularity using a regular expression that defines the surrounding 
characters of a Bug ID in the commit messages and outperforms even some of the complex prediction 
techniques [Mauša et al., 2014a]. Finally, it computes the 50 software product metrics using LOC 
Metrics and JHawk for each source code file. All the numerical metrics are used as independent 
variables for our experiment, so we excluded only the name of superclass. In order to make the 
dependent variable suitable for classification, the number of bugs per file was transformed into binary 
attribute named Fault proneness. Its value is set to 1 for all the files that contain at least 1 bug and 
set to 0 otherwise. The final structure of dataset is a matrix of size N x n, where N represents the 
number of files and n represents the number of features. 

4.2 Experiment Workflow 

We used the Weka Experimenter Environment (version 3.6.9) to perform the experiment. Weka is a 
popular open source software for machine learning written in java, developed at the University of 
Waikato, New Zealand. The experiment workflow includes the following steps: 
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(1) import the data in arff format and assign fault proneness to be the dependent variable 

(2) split the training and testing sets using 10-times 10-fold cross validation 
(3) build RttFor, LogReg and RndFor models 
(4) evaluate the models’ performance in terms of Acc, TPR, FPR, F-measure, Kappa and AUC 

(5) perform the paired T-test of significance  
 

The 10-times 10-fold cross validation is used to prepare the training and testing sets. The 10-fold cross 
validation divides the dataset into 10 parts of equal size, randomly picking instances (rows) and 
maintaining the number of features (columns). In each of 10 steps, another 1/10 portion of dataset is 
used as testing set and the remaining 9/10 are used for training. The 10-times 10-fold cross validation 
iterates the whole procedure 10 times, evaluating the classification model for 100 times in total.  
The classification models are all built and evaluated upon the same training and testing datasets, i.e. 
JDT release. It is important to be aware that the parameters tuning can improve the performance of 
various classifiers [Chen et al., 2009]. Thus, we performed an examination of their performance with 
various configurations. We used Weka’s CVParameter Selection meta classifier that performs 
parameter selection by cross-validation for any classifier. For RndFor, we were configuring the 
number of features per tree from 1 to 8 (8 is the default value, calculated as 
logଶሺ݊ݏ݁ݐݑܾ݅ݎݐݐܽ ݂ ݎܾ݁݉ݑሻ  1), the maximum depth of tree from 1 to 5 (including the default 
unlimited depth) and the number of trees from 10 to 50 with step of 5 (default value is 10). For RttFor, 
we were configuring only the number of groups from 3 to 10 (default value is 3) and left the number of 
iterations to default value of 10 and the percentage of removed instances to default value of 50%. 
Since there were no significantly different results obtained by either of these configurations, we left 
all the parameters to their default values for the main experiment. 

4.3 Performance Evaluation 

The evaluation of binary classification problems is usually done using the confusion matrix. Confusion 
matrix consists of correctly classified instances, true positive (TP) and true negative (TN), and 
incorrectly classified instances, false positive (FP) and false negative (FN). In our case, the Positive 
instances are the ones that are Fault Prone (FPr), i.e. files that have at least 1 bug, and Non-Fault-
Prone files (NFPr) are the Negative ones. The evaluation metrics that we used in our experiment are 
the following ones: 
 

 Accuracy (Acc) – number of correctly classified files: 

ܿܿܣ ൌ
்ା்ே

்ାிேାிା்ே
     (3) 

 True Positive Rate (TP_Rate, Recall) – number of correctly classified FPr files in total FPr files: 

݁ݐܴܽ ܲܶ ൌ
்

்ାிே
     (4) 

 False Positive Rate (FP Rate) – number of incorrectly classified NFPr files in total false predictions: 

݁ݐܴܽ ܲܨ ൌ
ி

ிାிே
     (5) 

 F-measure (F) – harmonic mean of TPR and Precision: 

ܨ ൌ 2 ·
TPR·P୰ୣୡ୧ୱ୧୭୬

்ோା௦
     (6) 

 Kappa statistics – accuracy that takes into account the chance of random guessing: 

ߢ ൌ
AୡୡିP୰ _୰ୟ୬ୢ

ଵିP୰ _ௗ
     (7) 

where Pr_rand is equal to: 
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݀݊ܽݎ_ݎܲ ൌ
TPାFN

்௧
·

TPାFP

்௧


TNାFP

்௧
·

TNାFN

்௧
      (8) 

 
The usual output of a binary classifier is the probability that a certain instance belongs to the Positive 
class. Before making the final prediction, a probability threshold value, above which instances are 
going to be classified as Positive, needs to be determined. That is why all the above mentioned 
evaluation metrics are calculated with predetermined threshold value. A metric that does not depend 
on the threshold value is: 
 

 Area under receiver operating curve (AUC): 

ܥܷܣ ൌ  ROC_curve
ଵ

      (9) 

where ROC_curve is a graphical plot that illustrates the relation between TP_Rate and FP_Rate for all 
possible probability threshold values. 

 
All the used metrics have their values in range [0-1]. The performance of a classifier is better for 
higher values of Accuracy, TP Rate, F-measure, Kappa statistics and AUC. Only in the case of FP 
Rate, also known as the false alarm rate, the performance is better for lower values. It is important to 
use several evaluation metrics because they examine predictive performance from various angles. In 
the presence of severe data imbalance between the two output classes, it is even more important. For 
example, Acc can then easily become very high, misleading us to believe in excellent performance. On 
the other hand, the FP Rate would be also very high, indicating that the prediction is of questionable 
value [Mauša et al., 2012]. After obtaining the results, we perform the paired T-test in order to 
discover whether there are significant differences between classifiers. The whole process is repeated 
for each of the 5 Eclipse JDT datasets and for each of the 6 evaluation metrics. 

5. RESULTS 

The results of the paired T-tests for Acc, TPR, FPR, F-measure, Kappa statistics and AUC are given 
in Table II. Paired T-test compares only two classifiers at the time in one evaluation metric. First five 
rows represent the paired T-test comparison of results when the RttFor is the basis of comparison and 
the second five rows provide the results when the LogReg is compared to other two classifiers. The 
only remaining combination would be to use the RndFor as a comparison basis, but that one can be 
deduced from the previous two. The basis of comparison and its results are given in bold. The results 
are presented with their average value and standard deviation of 100 iterations that are obtained 
with the 10-times 10-fold cross validation process. The results that exhibit significant difference are 
marked with * and v. Sign * is given for cases in which the compared classifier is performing 
significantly worse than the basis of comparison and v is given for significantly better performance. 
The results that do not exhibit statistically significant difference have no sign adjacent to them. From 
results presented in tables II, we draw following observations: 
 

 Overall summary of results shows that RttFor achieved 29 wins and 14 loses, RndFor achieved 19 
wins and 14 loses, LogReg achieved 15 wins and 27 loses 

 RttFor outperformed RndFor and LogReg in terms of AUC and Kappa statistics in all but 1 case. 

 LogReg outperformed RndFor and RttFor in terms of FP rate in all but 1 case. 

 RttFor is outperformed only in terms of TP Rate and FP Rate, 6 times by RndFor and 8 times by 
LogReg 
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Table II. Paried T-tests between Rotation Forest, Random Forest and Logistic Regression  

Dataset 
Accuracy TP Rate FP Rate 

RttFor RndFor LogReg RttFor RndFor LogReg RttFor RndFor LogReg 

JDT 2.0 0.75(0.03) 0.73(0.03) * 0.71(0.03) * 0.76(0.04) 0.77(0.04) 0.76(0.04) 0.26(0.04) 0.35(0.05) v 0.37(0.05) v 

JDT 2.1 0.83(0.02) 0.82(0.02) 0.81(0.02) * 0.86(0.03) 0.88(0.03) 0.88(0.03) 0.38(0.06) 0.46(0.06) v 0.52(0.05) v 

JDT 3.0 0.79(0.02) 0.79(0.02) 0.78(0.02) * 0.82(0.03) 0.84(0.03) 0.86(0.03) v 0.35(0.04) 0.40(0.04) v 0.48(0.04) v 

JDT 3.1 0.82(0.02) 0.82(0.02) 0.81(0.01) * 0.87(0.03) 0.87(0.02) 0.91(0.02) v 0.43(0.05) 0.49(0.05) v 0.61(0.05) v 

JDT 3.2 0.81(0.03) 0.80(0.02) 0.80(0.02) 0.82(0.04) 0.85(0.04) v 0.88(0.03) v 0.32(0.06) 0.38(0.06) v 0.47(0.06) v 

 LogReg RndFor RttFor LogReg RndFor RttFor LogReg RndFor RttFor 

JDT 2.0 0.71(0.03) 0.73(0.03) 0.75(0.03) v 0.76(0.04) 0.77(0.04) 0.76(0.04) 0.37(0.05) 0.35(0.05) 0.26(0.04) * 

JDT 2.1 0.81(0.02) 0.82(0.02) 0.83(0.02) v 0.88(0.03) 0.88(0.03) 0.86(0.03) 0.52(0.05) 0.46(0.06) * 0.38(0.06) * 

JDT 3.0 0.78(0.02) 0.79(0.02) 0.79(0.02) v 0.86(0.03) 0.84(0.03) * 0.82(0.03) * 0.48(0.04) 0.40(0.04) * 0.35(0.04) * 

JDT 3.1 0.81(0.01) 0.82(0.02) 0.82(0.02) v 0.91(0.02) 0.87(0.02) * 0.87(0.03) * 0.61(0.05) 0.49(0.05) * 0.43(0.05) * 

JDT 3.2 0.80(0.02) 0.80(0.02) 0.81(0.03) 0.88(0.03) 0.85(0.04) * 0.82(0.04) * 0.47(0.06) 0.38(0.06) * 0.32(0.06) * 

 
F-measure Kappa AUC 

RttFor RndFor LogReg RttFor RndFor LogReg RttFor RndFor LogReg 

JDT 2.0 0.75(0.03) 0.73(0.03) * 0.71(0.03) * 0.49(0.05) 0.42(0.06) * 0.38(0.06) * 0.83(0.03) 0.79(0.03) * 0.75(0.03) * 

JDT 2.1 0.83(0.02) 0.82(0.02) 0.81(0.02) * 0.50(0.06) 0.44(0.06) * 0.39(0.06) * 0.84(0.02) 0.81(0.02) * 0.79(0.03) * 

JDT 3.0 0.79(0.02) 0.79(0.02) 0.78(0.02) * 0.48(0.05) 0.45(0.04) * 0.40(0.05) * 0.82(0.02) 0.80(0.02) * 0.77(0.03) * 

JDT 3.1 0.82(0.02) 0.82(0.02) 0.81(0.01) * 0.45(0.05) 0.41(0.05) * 0.34(0.05) * 0.81(0.02) 0.79(0.03) * 0.75(0.03) * 

JDT 3.2 0.81(0.03) 0.80(0.02) 0.80(0.02) 0.51(0.07) 0.48(0.07) 0.43(0.06) * 0.84(0.03) 0.82(0.03) * 0.79(0.03) * 

 LogReg RndFor RttFor LogReg RndFor RttFor LogReg RndFor RttFor 

JDT 2.0 0.71(0.03) 0.73(0.03) 0.75(0.03) v 0.38(0.06) 0.42(0.06) 0.49(0.05) v 0.75(0.03) 0.79(0.03) v 0.83(0.03) v 

JDT 2.1 0.81(0.02) 0.82(0.02) 0.83(0.02) v 0.39(0.06) 0.44(0.06) v 0.50(0.06) v 0.79(0.03) 0.81(0.02) v 0.84(0.02) v 

JDT 3.0 0.78(0.02) 0.79(0.02) 0.79(0.02) v 0.40(0.05) 0.45(0.04) v 0.48(0.05) v 0.77(0.03) 0.80(0.02) v 0.82(0.02) v 

JDT 3.1 0.81(0.01) 0.82(0.02) 0.82(0.02) v 0.34(0.05) 0.41(0.05) v 0.45(0.05) v 0.75(0.03) 0.79(0.03) v 0.81(0.02) v 

JDT 3.2 0.80(0.02) 0.80(0.02) 0.81(0.03) 0.43(0.06) 0.48(0.07) v 0.51(0.07) v 0.79(0.03) 0.82(0.03) v 0.84(0.03) v 

* – significantly worse, v – significantly better 

5.1 Threats to Validity 

It is very important to be aware of the threats to validity of our case study [Runeson and Höst, 2009] 
and we address them in this subsection. The generalization of our results is limited with the choice of 
the datasets we used. We covered only the evolution through 5 subsequent releases of only 1 project 
that comes from only 1 open source community. A greater number of case studies like this one, with as 
many datasets from various domains, is required to achieve a conclusion of greater confidence level. 
The choice of comparing classification algorithms is another threat to validity. This case study 
included only 2 classifiers other than RttFor. However, we chose the LogReg and the RndFor due to 
their very good performance in other case studies. The choice of classification model’s parameters is a 
potential source of bias to our results. That is why we performed an analysis of performance when 
tuning the parameters. Since we noticed no statistically significant difference between various 
configurations, we left them to their default values. 
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6. RESULTS 

This paper continues the search for a classification algorithm of utmost performance for the SDP 
research area. We analyzed a promising novel classifier called RttFor that received very limited 
attention in this field so far. We compared the performance of RttFor with the LogReg and the RndFor 
in terms of 6 diverse evaluation metrics in order to get as detailed comparison as possible. The 
classifiers were used upon 5 subsequent releases of Eclipse JDT open source project. These datasets 
contain between 1800 and 3400 instances, i.e. java files, 48 features describing their complexity and 
size and 1 binary class variable that indicates weather the file contains defects or not. The comparison 
was done using paired T-test of significance between results obtained by 10-times 10-fold cross-
validation. 

The conclusion of our case study and the answer to our RQ is that RttFor is indeed a state of the art 
algorithm for classification purposes. The overall ranking of the three classifiers we analyzed shows 
that the RttFor is the most successful one, the RndFor is the second best and the LogReg is the least 
successful classifier. This finding is consistent with other case studies that used RttFor and proves 
that this classifier needs to be taken into account when performing research in SDP more often. Our 
future work intentions include a more complex comparison that would include a greater number of 
classification algorithms. But more importantly, it would include a greater number of datasets, 
covering longer periods of projects’ evolution and a greater number of projects from various contexts. 
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