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Abstract – Software Defect Prediction (SDP) empirical 
studies are highly biased with the quality of data and widely 
suffer from limited generalizations. The main reasons are 
the lack of data and its systematic data collection 
procedures. Our research aims at producing the first 
systematically defined data collection procedure for SDP 
datasets that are obtained by linking separate development 
repositories. This paper is the first step to achieving that 
objective, performing an exploratory study. We review the 
existing literature on approaches and tools used in the 
collection of SDP datasets, derive a detailed collection 
procedure and test it in this exploratory study. We quantify 
the bias that may be caused by the issues we identified and 
we review 35 tools for software product metrics collection. 
The most critical issues are many-to-many relation between 
bug-file links, duplicated bug-file links and the issue of 
untraceable bugs. Our research provides more detailed, 
experience based data collection procedure, crucial for 
further development of SDP body of knowledge. 
Furthermore, our findings enabled us to develop the 
automatic data collection tool. 

I. INTRODUCTION 

The research community is in need of a systematically 
defined data collection procedure for Software Defect 
Prediction (SDP) studies. In order to achieve this goal, we 
need to be aware of all the issues that could lead to data 
bias. Data collection from freely available open source 
projects is becoming increasingly popular, so we decided 
to reveal as many issues that are present in their 
development repositories.  

A great number of empirical studies tried to indentify 
the best approach to SDP and most of them are collected 
in several systematic review [1,2,3,4]. However, there is 
still work to be done on reproducibility of empirical 
studies based on datasets retrieved from development 
repositories [5]. Detailed and replicable data collection 
procedures have to accompany the datasets in order to 
achieve greater generalization of SDP studies [1]. 
Furthermore, it is known that SDP repositories often 
suffer from data quality issues like: outliers, missing 
values, redundant or irrelevant attributes and instances, 
overlapping classes, contradictory samples, data shifting, 
imbalance of classes or replicability [6], [7]. Thus, we 
need to start systematically build a knowledge base on 

reusable research datasets. In this paper, we want to stress 
on role of human introduced bias in data collection 
procedure because it is developers who make entries into 
development repositories. We also recognize the 
importance of reusable tools for automated data collection 
that could play significant role in systematically building 
of uniformly obtained datasets. Freely available reusable 
tools, that have open source software with clearly defined 
data collection mechanism implemented, could form a 
base for wider discussion of data collection issues and its 
relations to bias. It is important that all research in the area 
of SDP collects the data according to a standardized 
procedure in order to perform repeatable and verifiable 
case studies that will benefit the body of knowledge. Thus, 
we aim to develop a rigorous systematic data collection 
plan that could be reused by other researchers. We also 
plan to quantify the main sources of bias. That kind of 
information would improve comparability between studies 
and generalization ability. Building a detailed data 
collection procedure and addressing all the possible issues 
is the first and crucial step in that process. Moreover, we 
believe the procedure should also be explained clearly 
enough to be applicable in industrial research as well as in 
academic that most often rely on open source software [8]. 

The paper is structured according to the guidelines 
given by Runeson and Höst [9] and Kitchenham et al. 
[10]. Section II puts our research into context and presents 
the related work. Section III explains in detail 
experimental planning where we organized the objective 
of our research into several research questions, presented 
the subject of the experiment and the means to perform it, 
defined the tasks that are going to be executed and 
methods how to do it, described the experiment design 
and prepared the analyzes and validation procedures that 
will enable us to answer the research questions. Section 
IV describes the execution of experiment. Finally, we 
present the results and answers to each research question 
in Section V and conclude the paper in Section VII. 

II. BACKGROUND AND RELATED WORK 

The importance of building a verifiable, repeatable 
and accurate data collection plan was recognized and put 
into several steps by Basili and Weiss [11]. Our research 
goal is to create most often used type of SDP datasets 



using such a data collection plan. We analyzed all the 36 
papers that were selected for final analysis in [1] because 
those were the ones that contained description of data 
collection procedure. However, we identified there is a 
lack of systematic unified mechanism in that area. There 
is a number of SDP studies that contain a section 
describing their data collection. However, there are no 
guidelines for reporting the crucial details of data 
collection process. Hence, it is not not performed 
systematically and one could not compare and quantify 
bias introduced with the data collection process.  

Nevertheless, there were some attempts in that 
direction. A very good example of planned validation 
procedure can be found in [12]. They analyzed possible 
threats to validity, prepared and performed a manual 
check of a subset of potentially flawed data and evaluated 
the soundness and completeness of their data collection 
procedure. A detailed plan of analysis that should confirm 
the appropriateness of a novel approach for the data 
collection procedure in the phase of linking bugs to 
changes is present in [13]. They prepared a sort of 
benchmarking data set, manually collected and validated 
using observer triangulation. They named it "the ground 
truth" and used it to compare their novel approach to the 
traditional one in terms of precision, recall and F-measure 
evaluation metrics. We believe this approach should be 
used more often when introducing novel concepts 
because with the use of statistical tests of significance it 
could accelerate the diversification of true improvements. 
Confirmation to our statements comes from research 
presented in [14] that used the same "ground truth" data 
set and in [12] that even improved and enlarged such a 
data set. One commonly identified issue is the bug linking 
issue when collecting the data from two separated 
repositories of bugs and source code changes is addresed 
in [15]. The paper [16] identified the bug-feature bias and 
commit feature bias in defect datasets.  

To the best of our knowledge, this is the first research 
intended to find all other issues present in the data 
collection procedure that could lead to biased software 
defect prediction datasets. We want to identify all the 
critical information that may be useful in comparison of 
different studies. It is important to be systematic because 
otherwise we could unintentionally include a source of 
bias and not be able to evaluate its impact. In our study 
we used students to manually collect the datasets and we 
draw conclusions from their data collection process. The 
similar approach is mentioned as in [16] but no 
systematic approach for the analysis of manually 
collected datasets is proposed. In this paper we conduct a 
systematic experiment which aims to identify all the traps 
in data collection process that lead to bias. In the 
remainder of the paper we refer to them as issues. 

III. EXPERIMENTAL PLANNING 

A. Research Goal 

Our research goal is to create a systematic data 
collection procedure for SDP data sets that will enable us 
to develop automated data collection tool. To achieve this 
goal, we follow the process of data collection procedure 

development presented in Figure 1. This paper presents 
the first step of that process. Its purpose is to reveal and 
quantify all the issues that stand in the way of creating the 
data collection procedure, and to find the appropriate 
software metrics tool.  

B. Research Questions 

Our research goal is divided into two research 
questions that will guide our exploratory study:  

RQ1. Which issues affect the data collection procedure 
and how could they be overcome?  

RQ2. Which software metrics tools are best suited for 
automatic collection?  

Giving answer to RQ1 is the primary purpose of this 
study. We hope to acquire as much experience and 
insight into the issues of data collection process as 
possible. Answering RQ2 will help us develop an 
automated data collection tool. There is a number of 
software metrics (SM) tools present on the Internet and in 
related work so we need to review them and implement 
the ones that satisfy certain criteria. 

C. Experimental Subjects 

The participants that conduct the data collection are 
12 students of the Faculty of Engineering at the 
University of Rijeka, Croatia,  enlisted in the course of 
Software Engineering Management, obligatory in the first 
year of graduate Computer Science study program. This 
is an appropriate course because it teaches the students 
the importance of proper and accurate data in the decision 
making processes in the evolution of a large and complex 
software product. The participants had no previous 
experience with SM tools, little experience with bug 
repository use and mixed experience with source code 
management repositories. That is why they were all 
introduced to the concepts of these repositories in 
preparation exercises and seminars. Meanwhile, we 
omitted the fact that this is an exploratory study and that 
the observer triangulation is used. 

D. Experimetnal Material 

The main experimental material are: software 
development repositories, SM tools, and data collection 
forms. There are two development repositories crucial 
to the SDP data collection: the bug tracking (BT) 
repository and the source code management (SCM) 
repository. The Eclipse open source community is the 
most often used subject in SDP data collection so we 
used its largest projects in our experiment: JDT, PDE, 
Platform, BIRT and Mylyn. We use the term large 
projects for those that contain houndreds or thousands of 

Figure 1.  Research plan 



source code files and have been developed through at 
least a decade of evolution.  The Eclipse community uses 
Bugzilla as its BT and GIT as its SCM repository. 
Bugzilla is a Web-based general-purpose bug tracker that 
allows developers to keep track of both defects that cause 
loss of functionality and requirements’ requests. GIT is a 
distributed version control and source code management 
system with complete history and full version tracking 
capabilities. The SM tools are required in the second 
phase of our experiment for calculation of various 
product metrics. Further details are given in section IV-A. 
We use five data collection forms in the data collection 
procedure. Each form is prepared and explained in details 
for each of the tasks demanded from the participants to 
solve: 

Form 1 is designed to collect the pieces of information 
from the BT repository: Bug ID, Product, Version, 
Summary (Full), Priority, Assignee, Number of 
Comments, Opened, Changed.  

Form 2 is designed to document the bug-commit 
linking output: Bug ID, Found (yes/no), Commit ID. 

Form 3 is designed to collect the pieces of information 
related to the linked files from the SCM repository: 
File path, Bug ID, Insertion, Deletion 

Form 4 is designed to collect all the metrics obtained 
by SM tools both before and after the bug fix: File 
path, Product Metrics (m1, m2, ..., mn). 

Form 5 is designed as the final dataset form that 
containes all the metrics and the number of bugs for 
each file: File path, Metrics (m1, m2, ..., mn), 
Number of bugs, Release. 

E. Tasks and Methods 

We need to perform several tasks to answer our 
research questions:   

1. Examine the appropriateness of SM tools for our 
data collection procedure 

2. Execute the data collection procedure manually 
and automatically 

3. Analyze the collected data and examine the 
sources of bias  

 The first task gives us the answer to the RQ2. It  
needs to be done prior to data collection because it is an 
investigation of its own and the results are implemented 
in the second task. The manual execution of the data 
collection reduces initial researcher bias and gives 
insights into the issues that need to be addressed. Making 
the data collection precess automatic could reveal some 
additional issues. Furthermore, the manual and automatic 
data collection provide us with valuable data for 
evaluation of the issues and for answering the RQ1. In 
order to conduct all of these tasks, we use the following 
methods:   

1. Seminars for reviewing the SM tools 
2. Written Instructions with Examples for each 

step of the data collection procedure 
3. Data analysis and validation methods of the 

results obtained during the experiment  

The participants are given a preselected subset of the 
SM tools for reviewing and they are involved in the 
execution of data collection procedure. The authors of 
this paper perform the literature and Internet survey to 
locate all the SM tools, form a list of the most 
representative range of product metrics, find the 
candidate tools for further examination through seminars, 
plan the data collect procedure, prepare the written 
instructions and examples for each step of the data 
collection procedure, and determine the data analysis and 
validation techniques that we explain in more details in 
the following section. 

F. Experimental Design 

The manual collection is executed to identify all the 
issues present in our data collection process. The task 
scheduling is performed so that it allows a validation of 
the performance of different SM tools and the data itself 
early enough to enable timely corrective action on data 
collection procedure. Since participants could be the 
source of bias as well, we assign each project and each 
tool to more than one participant, i.e. following the 
principle of observer triangulation [13]. The participants 
are given personalized tasks in 4 exercises with 52 steps 
and explained by 21 screen-shot figures. The data 
collection procedure is divided into several phases. Each 
phase, along with its issues is presented in Figure 2. We 
describe them in more details and give a proposition how 
to solve them in the remainder of this subsection.  

SM Tool Selection: The initial phase is to select the 
SM tools for collection of software metrics that represent 
the independent variables in SDP. Since we decided to 
analyze Eclipse projects and collect the most often used 
software metrics, the tool needs to be able to analyze 
large projects written in java and give reports for 
calculated software product metrics on file or class level 
of granularity.  

Issue 1.1 The SM tools requirements are: 

1. Availability of tool - for in-use testing  
2. Programming language – java 
3. Level of granularity – file / class level  
4. Software metrics – product metrics  
5. Usability - input – capable for large projects 
6. Usability - output – csv, html or xml reports 

Project Selection: The initial phase also needs to 
select the open source project that will be the source of 
SDP data set. The issues that affect this initial phase are:  

Issue 2.1 The project needs to be present both in the BT 
and in the SCM repository  
Issue 2.2 The project’s releases from BT must be present 
as release tags in SCM repository  

The presented issues are rather self-explanatory. We 
need to be able to access the source code, the bugs and 
the corresponding releases in both repositories. We 
evaluate these issues by choosing a great number of 
projects from the chosen Eclipse community, and analyze 
which projects contain release designations in both 
repositrories.  



Bug Repository Collection: The first data collection 
phase is to find defects from the Bugzilla repository and 
collect all the valuable pieces of information.   

Issue 3.1 The bug must be relevant to SDP  
Issue 3.2 The bug should be solved  

BT repositories typically store bugs and 
enhancements. Furhteremore, bugs may relate to minor 
typographical errors. The bugs relevant to SDP are the 
ones that represent a loss of functionality which is 
indicated by severity level above trivial. Since we need to 
linking the bug to source code, the bugs need to be solved 
in order to be present in the commits from the SCM 
repository. A BT tabular report, as presented in From 1, 
for all releases of each project is required with following 
parameters:   

 Bug Status: resolved, verified and closed 
 Bug Resolution: fixed 
 Bug Severity: blocker, critical, major, normal 

and minor  

This way we bypass all the unconfirmed, invalid or 
duplicated defects, defects that are not solved or that 
could not be solved and requirement requests.  

We evaluate the impact of these issues by comparing 
the number of bugs that satisfy our parameters to the 
number of bugs that satisfy opposite parameters (Bug 
Status: unconfirmed, new, assigned and reopened; Bug 
resolition: invalid, wontfix, duplicate, worksforme, 
moved and not_eclipse; Bug severity: enhancement, and 
trivial). 

SCM Repository Collection: The second data 
collection phase is to find the SCM repository for the 
chosen project in GIT. We need stable releases of the 
project for future analysis of software metrics. If issues 
2.1 and 2.2 are both satisfied, there remains only one 

issue, related mostly to large projects and we evaluate it 
by counting the number of such projects. 

Issue 4.1 The project may be divided into several sub-
repositories within the foundation’s top level GIT 
repository  

Bug - Commit Linking: The most important data 
collection phase is to link the BT and SCM repositories 
because it yields the number of defects per software 
module. Every source code change is stored within 
commits and each commit has the developers description 
of the change within a message. The linking is done by 
searching the Bug ID in the commit message. We use 
Form 2 to record successful linking.   

Issue 5.1 The Bug ID number may be a part of larger 
block of characters 
Issue 5.2 The Bug ID may be present in more than one 
commit  

The issue of varying length of the Bug ID presents an 
obstacle to automatic data collection. It is important to 
search for the exact match of the Bug ID. We evaluate its 
impact by calculating the percentage of the Bug IDs we 
can link with the simple search and the strict search we 
mentioned. The second issue is because of the nature of 
complex bugs  that require a lot of change, possibly in 
different subrepositories, and because of the loose 
development rules in the community. We evaluate it by 
comparing the number of linked commits and the number 
of bugs. 

Source Code Analysis: This phase consists of 
calculating the product metrics of all the source code files 
in each release of the chosen project. The SM tools are 
used for that purpose. All the product metrics obtained by 
these tools are collected in Form 4.  

 
Figure 2.  The impact of identified issues on each data collection phase 



SDP Dataset Generation: The final phase of our data 
collection procedure is to construct the final SDP dataset 
in the Form 5, combining the output of the previous two 
phases.   

Issue 6.1 The file identifier needs to be unique for the 
Source Code Analysis and the Bug - Commit Linking  
Issue 6.2 File – Bug cardinality is many-to-many  
Issue 6.3 Single file can be changed in multiple commits 
that are linked to one bug  

The unique identifier of any file present in one release 
is its File Path. In order to cope with issue 6.1, the file 
path was extracted from commits in the same way it was 
extracted in the output of SM tools. Neglecting this issue 
would make it very difficult to connect the previous two 
phases. Due to issue 6.2 and 6.3, we count the number of  
distinct File Path and Bug ID (FB) ordered pairs in Form 
3. To evaluate the potential impact of issue 6.2, we 
compare the number of FB pairs with the number of 
linked files and bugs. The impact of issue 6.3 will be 
evaluated through the number of FB duplicates. 

IV. RESULTS 

The literature and Internet survey found 35 SM tools 
(12 from [8] and additional 23 from the Internet search) 
and we analyzed them all. The tools were compared 
against demands presented in subsection III-F. In the first 
stage, we analyzed the tool descriptions. In the second 
stage, we anylzed the remaining tools more thoroughly in 
usage on a sample project through participants’ seminars. 
In the third stage, we tested the tools in large scale 
manual data collection. 19 tools passed the first review 
stage, 5 tools passed the second and only 2 remained in 
the end. Here is a full list of tools we analyzed: 
iPLASMA, inFusion, inCode, CodeCover, JavaNCSS, 
ckjm, Understand, Borland Together, CodeSonar Static 
Analysis Tool, CodePRO Analytix, Metrics 1.3.8, Moose, 
JavaMetrics, Testwell CMT ++ (CMTJava), JDepend, 
Dependency Finder, JarAnalizer, CCCC, Source Code 
Metrics, Classycle, Sonar, Resource Standard Metrics, 
Jhawk, Jtest, SonarGraph, PMD, JDiff, CodeCount, 
LocMetrics, CodeAnalyzer, JMT, Jmetric, ES2, Xradar, 
Essential Metrics. Table 1 presents 7 categories of 
disqualifying factors we applied and the number of tools 
reject due to each of them. 

The tools that were tested in use are: CodePRO 
Analytix, Metrics 1.3.8, Source Code Metrics, Jhawk and 
LocMetrics. Metrics 1.3.8. required projects to be built 
and Source Code Metrics required the restart of NetBeans 
for each following analysis. A great number of analyses 
dictated to exclude these two tools. We did not manage to 
automate the Code PRO Analytix and since it was 
incapable of analyzing whole project releases it was 
discarted as well. The LOC Metrics1 proved to be a fast 
tool offering a sample of 10 simple product metrics and 
the JHawk2 enriched the set of metrics with additional 40. 
The complete set of software product metrics provided by 
these two tools is wider than in any other related study. 

                                                            
1 http://www.locmetrics.com/ 

2 http://www.virtualmachinery.com/jhawkprod.htm 

The evaluation of data collection issues is presented in 
tables 2, 3, 4, 5 and 6. Table 2 reveals that not all of the 
Eclipse projects are present in the GIT repository. We 
analyzed 85 different Eclipse projects from BT 
repository. We found 76 of them in SCM repository, 
indicating that the issue 2.1 is rarely present. 
Furtheremore, for 51 projects we managed to find release 
tags in SCM that correspond to release numbers from BT. 
It shows the naming convention of releases are not 
always consistent and that issue 2.2 could impact greater 
number of projects. Finally, we found that 37 projects are 
distributed in more than one sub-repository, showing that 
it is important to be aware of issue 4.1. Table 3 presents 
the importance of choosing the appropriate parameters 
while searching for bugs in the BT repository. We 
compare the number of bugs collected by Our parameters 
(subsection III-F-Bug repository collection) and by other 
parameters. We can expect a completely different SDP 
dataset if we do not limit the Bug Resolution to fixed 
only. On the other hand, bugs with incomplete data 
(expected by Form 1) are rare and could cause 
insignificant bias. The inclusion of bugs of opposite 
severity may cause from 10% - 15% bias in the number 
of bugs. For the Mylyn project, the bias rises to 45%. 
Table 4 demonstrates the need for a precise search 
criterion for establishing the bug - commit links. A great 
number of incorrectly linked bugs may occur if we 
simply search for the Bug ID as a series of digits (Simple 
Search) and not defining its surrounding characters (Strict 
search). The bias in the linking rate from 7% - 40% 
proves issue 5.1 to be very important. Table 5 reveals that 
a single bug ID may be linked to more than one commit 
and that it is highly important to be aware of issue 5.2. 
Table 6 reveals that the number of FB pairs is much 
greater than the number of files that were linked to bugs, 
proving that the majority of bugs is located in a smaller 
part of the software. We also notice that the number of 
linked files can be both greater (PDE, BIRT, Mylyn) or 
lower (JDT, Platform) than the number of linked bugs, 
proving that issue 6.2 needs to be taken into account. The 
number of FB pair duplicates is presented in table 7. We 
performed additional manual root cause analysis of a 
subset of FB duplicates. We discovered that some FB 
pairs even occurred more than twice and their cause was:   

 

TABLE I. SM TOOLS REVIEW - ISSUE 1.1

Requirement Important characteristics 
Rejection 

rate 

1 Availability of tool 5 

2 Programming language - java 0 

3 Level of granularity - files 7 

4 
Software metrics - product 

- too few metrics 
4 
4 

5 Usability - large input 3 

6 Usability - output reports 1 

7 
Other - older version of another 
Other - not a tool, a platform 
Other - trial version too limited 

2 
2 
2 



    • There are both a bug test and a bug fix reported 
for the same FB pair  

    • There are 2 bug fixing commits reported in the 
SCM for the same FB pair  

    • There had been reported one or two temporary 
bug fixes before the final bug fix was reported  

    • There are both a bug fix and a revert bug fix 
reported for the same FB pair  

 All the reasons we found show us that only the final 
bug fixing commit should be regarded as relevant 

V. THREATS TO VALIDITY 

There are two major threats to validity to our 
experiment: the specificity of data (only several largest 
Eclipse projects written in java stored in Bugzilla and 
GIT) and the possibility of human error from the 
participants. However, observer triangulation and the 
partial automation of the process reduced this the human 
error influence and most recent experiments showed the 
procedure can be also successfully used for other projects 
from other foundations, like Mozilla or Apache. In 
contrast to usual data collection procedures, we 
welcomed the differences in collected data from different 
participants because those were indicators of issues we 
need to address. 

VI. CONLUSION 

The goal of this exploratory research was to identify 
as many issues that may cause bias in the SDP data 
collection procedure. Our survey of related research and 
other sources in this area available on the Internet 

resulted in a preliminary data collection protocol. That 
protocol, along with detailed descriptions was given to 12 
participants of our experiment and they were assigned 5 
major Eclipse projects. Their output data was then 
analyzed and validated through a number of metrics and 
manual inspections.  

As an answer to our RQ1, we identified and 
quantified several important issues that may become a 
significant source of bias in the SDP dataset. The 
collection starts with the choice of proper open source 
projects that contain their data in the BT and the SCM 
repositories. Some larger projects contain several SCM 
subrepositories. Relevant bugs are the resolved, verified 
and closed ones with the resolution fixed and severity 
level above trivial because SDP requires only those that 
caused a loss in functionality. Linking between bugs and 
commits must be done in a carefully defined strict 
manner because otherwise we might obtain bias in 
linking rate. Multiple links between bugs and commits 
(i.e. files) and duplicated file-bug links can be expected. 
We also answered our RQ2. After we thoroughly 
analyzed 35 SM tools, we identified LOC Metrics and 
JHawk as the most appropriate for our automatic data 
collection tool [17]. These two SM tools provide us with 
a respectable subset of 50 product metrics and are 
suitable for automating the data collection process. 

Finally we find evidence that human error is widely 
present in development repositories. Allthough the Bug ID 
is a unique identifier of a software defect, it cannot be 
always linked to the commit that made it fixed. Therefore, 
a certain number of bugs remains untraceable and 
becomes an issue in the phase of determining the non-
fault-prone files as well as the fault-prone ones. However, 
there are indications that some versions suffer a lot less 
from this problem and a more detailed analysis is intended 
for our future work. 
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TABLE II.  EVALUATION  - ISSUES 2.1, 2.2 AND 4.1

Demand Important characteristics 
Acceptance 

rate 

- Total projects analyzed 85 

1 Present in BR and SCM repository 76 

2 Corresponding release tags 51 

3 >1 SCM subrepository 37 

TABLE III.  EVALUATION  - ISSUES 3.1,  AND 3.2

Bug 
requirement 

Number of bugs per project 
JDT PDE Platform BIRT Mylyn 

Our paramaters 20353 7318 38511 13071 3492 

Opposite 
severity 

2875 895 4604 1243 1581 

Opposite status 0 0 0 0 0 

Opposite 
resolution 

16488 3570 32582 3059 1909 

Incomplete bug 
data 

64 26 108 7 1 

TABLE IV.  EVALUATION  - ISSUE 5.1

Linking 
Technique 

Linking rate per project 
JDT PDE Platform BIRT Mylyn 

Bugs: 18696 6822 34641 8101 2739 

Simple Search: 80.5% 65.8% 80.7% 59.8% 52.3% 

Strict Search: 72.0% 58.6% 71.2% 18.9% 16.1% 

TABLE V. EVALUATION  - ISSUE 5.2 

Number of 
Multiple bug-commit links per project 

JDT PDE Platform BIRT Mylyn 

Bugs linked: 13468 3995 24663 1532 441 

Commits linked: 17667 7573 29669 2127 3002 

TABLE VI. EVALUATION  - ISSUE 6.2 

Number of 
Multiple file-bug links per project 

JDT PDE Platform BIRT Mylyn 

Bugs linked: 13468 3995 24663 1532 441 

Files linked: 12080 6629 15084 4273 975 

Bug-file links: 25476 16595 23784 6663 1258 

TABLE VII. EVALUATION  - ISSUE 6.3 

Number of 
Duplicated file-bug links per project 

JDT PDE Platform BIRT Mylyn 

FB duplicates: 768 1233 903 4 0 
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