
Data Collection for Software Defect Prediction –
an Exploratory Case Study of Open Source

Software Projects

Goran Mauša*, Tihana Galinac Grbac * and Bojana Dalbelo Bašić**
* Faculty of Engineering, University of Rijeka, Rijeka, Croatia

** Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
goran.mausa@riteh.hr, tihana.galinac@riteh.hr and bojana.dalbelo@fer.hr

Abstract – Software Defect Prediction (SDP) empirical
studies are highly biased with the quality of data and widely
suffer from limited generalizations. The main reasons are
the lack of data and its systematic data collection
procedures. Our research aims at producing the first
systematically defined data collection procedure for SDP
datasets that are obtained by linking separate development
repositories. This paper is the first step to achieving that
objective, performing an exploratory study. We review the
existing literature on approaches and tools used in the
collection of SDP datasets, derive a detailed collection
procedure and test it in this exploratory study. We quantify
the bias that may be caused by the issues we identified and
we review 35 tools for software product metrics collection.
The most critical issues are many-to-many relation between
bug-file links, duplicated bug-file links and the issue of
untraceable bugs. Our research provides more detailed,
experience based data collection procedure, crucial for
further development of SDP body of knowledge.
Furthermore, our findings enabled us to develop the
automatic data collection tool.

I. INTRODUCTION

The research community is in need of a systematically
defined data collection procedure for Software Defect
Prediction (SDP) studies. In order to achieve this goal, we
need to be aware of all the issues that could lead to data
bias. Data collection from freely available open source
projects is becoming increasingly popular, so we decided
to reveal as many issues that are present in their
development repositories.

A great number of empirical studies tried to indentify
the best approach to SDP and most of them are collected
in several systematic review [1,2,3,4]. However, there is
still work to be done on reproducibility of empirical
studies based on datasets retrieved from development
repositories [5]. Detailed and replicable data collection
procedures have to accompany the datasets in order to
achieve greater generalization of SDP studies [1].
Furthermore, it is known that SDP repositories often
suffer from data quality issues like: outliers, missing
values, redundant or irrelevant attributes and instances,
overlapping classes, contradictory samples, data shifting,
imbalance of classes or replicability [6], [7]. Thus, we
need to start systematically build a knowledge base on

reusable research datasets. In this paper, we want to stress
on role of human introduced bias in data collection
procedure because it is developers who make entries into
development repositories. We also recognize the
importance of reusable tools for automated data collection
that could play significant role in systematically building
of uniformly obtained datasets. Freely available reusable
tools, that have open source software with clearly defined
data collection mechanism implemented, could form a
base for wider discussion of data collection issues and its
relations to bias. It is important that all research in the area
of SDP collects the data according to a standardized
procedure in order to perform repeatable and verifiable
case studies that will benefit the body of knowledge. Thus,
we aim to develop a rigorous systematic data collection
plan that could be reused by other researchers. We also
plan to quantify the main sources of bias. That kind of
information would improve comparability between studies
and generalization ability. Building a detailed data
collection procedure and addressing all the possible issues
is the first and crucial step in that process. Moreover, we
believe the procedure should also be explained clearly
enough to be applicable in industrial research as well as in
academic that most often rely on open source software [8].

The paper is structured according to the guidelines
given by Runeson and Höst [9] and Kitchenham et al.
[10]. Section II puts our research into context and presents
the related work. Section III explains in detail
experimental planning where we organized the objective
of our research into several research questions, presented
the subject of the experiment and the means to perform it,
defined the tasks that are going to be executed and
methods how to do it, described the experiment design
and prepared the analyzes and validation procedures that
will enable us to answer the research questions. Section
IV describes the execution of experiment. Finally, we
present the results and answers to each research question
in Section V and conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

The importance of building a verifiable, repeatable
and accurate data collection plan was recognized and put
into several steps by Basili and Weiss [11]. Our research
goal is to create most often used type of SDP datasets

using such a data collection plan. We analyzed all the 36
papers that were selected for final analysis in [1] because
those were the ones that contained description of data
collection procedure. However, we identified there is a
lack of systematic unified mechanism in that area. There
is a number of SDP studies that contain a section
describing their data collection. However, there are no
guidelines for reporting the crucial details of data
collection process. Hence, it is not not performed
systematically and one could not compare and quantify
bias introduced with the data collection process.

Nevertheless, there were some attempts in that
direction. A very good example of planned validation
procedure can be found in [12]. They analyzed possible
threats to validity, prepared and performed a manual
check of a subset of potentially flawed data and evaluated
the soundness and completeness of their data collection
procedure. A detailed plan of analysis that should confirm
the appropriateness of a novel approach for the data
collection procedure in the phase of linking bugs to
changes is present in [13]. They prepared a sort of
benchmarking data set, manually collected and validated
using observer triangulation. They named it "the ground
truth" and used it to compare their novel approach to the
traditional one in terms of precision, recall and F-measure
evaluation metrics. We believe this approach should be
used more often when introducing novel concepts
because with the use of statistical tests of significance it
could accelerate the diversification of true improvements.
Confirmation to our statements comes from research
presented in [14] that used the same "ground truth" data
set and in [12] that even improved and enlarged such a
data set. One commonly identified issue is the bug linking
issue when collecting the data from two separated
repositories of bugs and source code changes is addresed
in [15]. The paper [16] identified the bug-feature bias and
commit feature bias in defect datasets.

To the best of our knowledge, this is the first research
intended to find all other issues present in the data
collection procedure that could lead to biased software
defect prediction datasets. We want to identify all the
critical information that may be useful in comparison of
different studies. It is important to be systematic because
otherwise we could unintentionally include a source of
bias and not be able to evaluate its impact. In our study
we used students to manually collect the datasets and we
draw conclusions from their data collection process. The
similar approach is mentioned as in [16] but no
systematic approach for the analysis of manually
collected datasets is proposed. In this paper we conduct a
systematic experiment which aims to identify all the traps
in data collection process that lead to bias. In the
remainder of the paper we refer to them as issues.

III. EXPERIMENTAL PLANNING

A. Research Goal

Our research goal is to create a systematic data
collection procedure for SDP data sets that will enable us
to develop automated data collection tool. To achieve this
goal, we follow the process of data collection procedure

development presented in Figure 1. This paper presents
the first step of that process. Its purpose is to reveal and
quantify all the issues that stand in the way of creating the
data collection procedure, and to find the appropriate
software metrics tool.

B. Research Questions

Our research goal is divided into two research
questions that will guide our exploratory study:

RQ1. Which issues affect the data collection procedure
and how could they be overcome?

RQ2. Which software metrics tools are best suited for
automatic collection?

Giving answer to RQ1 is the primary purpose of this
study. We hope to acquire as much experience and
insight into the issues of data collection process as
possible. Answering RQ2 will help us develop an
automated data collection tool. There is a number of
software metrics (SM) tools present on the Internet and in
related work so we need to review them and implement
the ones that satisfy certain criteria.

C. Experimental Subjects

The participants that conduct the data collection are
12 students of the Faculty of Engineering at the
University of Rijeka, Croatia, enlisted in the course of
Software Engineering Management, obligatory in the first
year of graduate Computer Science study program. This
is an appropriate course because it teaches the students
the importance of proper and accurate data in the decision
making processes in the evolution of a large and complex
software product. The participants had no previous
experience with SM tools, little experience with bug
repository use and mixed experience with source code
management repositories. That is why they were all
introduced to the concepts of these repositories in
preparation exercises and seminars. Meanwhile, we
omitted the fact that this is an exploratory study and that
the observer triangulation is used.

D. Experimetnal Material

The main experimental material are: software
development repositories, SM tools, and data collection
forms. There are two development repositories crucial
to the SDP data collection: the bug tracking (BT)
repository and the source code management (SCM)
repository. The Eclipse open source community is the
most often used subject in SDP data collection so we
used its largest projects in our experiment: JDT, PDE,
Platform, BIRT and Mylyn. We use the term large
projects for those that contain houndreds or thousands of

Figure 1. Research plan

source code files and have been developed through at
least a decade of evolution. The Eclipse community uses
Bugzilla as its BT and GIT as its SCM repository.
Bugzilla is a Web-based general-purpose bug tracker that
allows developers to keep track of both defects that cause
loss of functionality and requirements’ requests. GIT is a
distributed version control and source code management
system with complete history and full version tracking
capabilities. The SM tools are required in the second
phase of our experiment for calculation of various
product metrics. Further details are given in section IV-A.
We use five data collection forms in the data collection
procedure. Each form is prepared and explained in details
for each of the tasks demanded from the participants to
solve:

Form 1 is designed to collect the pieces of information
from the BT repository: Bug ID, Product, Version,
Summary (Full), Priority, Assignee, Number of
Comments, Opened, Changed.

Form 2 is designed to document the bug-commit
linking output: Bug ID, Found (yes/no), Commit ID.

Form 3 is designed to collect the pieces of information
related to the linked files from the SCM repository:
File path, Bug ID, Insertion, Deletion

Form 4 is designed to collect all the metrics obtained
by SM tools both before and after the bug fix: File
path, Product Metrics (m1, m2, ..., mn).

Form 5 is designed as the final dataset form that
containes all the metrics and the number of bugs for
each file: File path, Metrics (m1, m2, ..., mn),
Number of bugs, Release.

E. Tasks and Methods

We need to perform several tasks to answer our
research questions:

1. Examine the appropriateness of SM tools for our
data collection procedure

2. Execute the data collection procedure manually
and automatically

3. Analyze the collected data and examine the
sources of bias

 The first task gives us the answer to the RQ2. It
needs to be done prior to data collection because it is an
investigation of its own and the results are implemented
in the second task. The manual execution of the data
collection reduces initial researcher bias and gives
insights into the issues that need to be addressed. Making
the data collection precess automatic could reveal some
additional issues. Furthermore, the manual and automatic
data collection provide us with valuable data for
evaluation of the issues and for answering the RQ1. In
order to conduct all of these tasks, we use the following
methods:

1. Seminars for reviewing the SM tools
2. Written Instructions with Examples for each

step of the data collection procedure
3. Data analysis and validation methods of the

results obtained during the experiment

The participants are given a preselected subset of the
SM tools for reviewing and they are involved in the
execution of data collection procedure. The authors of
this paper perform the literature and Internet survey to
locate all the SM tools, form a list of the most
representative range of product metrics, find the
candidate tools for further examination through seminars,
plan the data collect procedure, prepare the written
instructions and examples for each step of the data
collection procedure, and determine the data analysis and
validation techniques that we explain in more details in
the following section.

F. Experimental Design

The manual collection is executed to identify all the
issues present in our data collection process. The task
scheduling is performed so that it allows a validation of
the performance of different SM tools and the data itself
early enough to enable timely corrective action on data
collection procedure. Since participants could be the
source of bias as well, we assign each project and each
tool to more than one participant, i.e. following the
principle of observer triangulation [13]. The participants
are given personalized tasks in 4 exercises with 52 steps
and explained by 21 screen-shot figures. The data
collection procedure is divided into several phases. Each
phase, along with its issues is presented in Figure 2. We
describe them in more details and give a proposition how
to solve them in the remainder of this subsection.

SM Tool Selection: The initial phase is to select the
SM tools for collection of software metrics that represent
the independent variables in SDP. Since we decided to
analyze Eclipse projects and collect the most often used
software metrics, the tool needs to be able to analyze
large projects written in java and give reports for
calculated software product metrics on file or class level
of granularity.

Issue 1.1 The SM tools requirements are:

1. Availability of tool - for in-use testing
2. Programming language – java
3. Level of granularity – file / class level
4. Software metrics – product metrics
5. Usability - input – capable for large projects
6. Usability - output – csv, html or xml reports

Project Selection: The initial phase also needs to
select the open source project that will be the source of
SDP data set. The issues that affect this initial phase are:

Issue 2.1 The project needs to be present both in the BT
and in the SCM repository
Issue 2.2 The project’s releases from BT must be present
as release tags in SCM repository

The presented issues are rather self-explanatory. We
need to be able to access the source code, the bugs and
the corresponding releases in both repositories. We
evaluate these issues by choosing a great number of
projects from the chosen Eclipse community, and analyze
which projects contain release designations in both
repositrories.

Bug Repository Collection: The first data collection
phase is to find defects from the Bugzilla repository and
collect all the valuable pieces of information.

Issue 3.1 The bug must be relevant to SDP
Issue 3.2 The bug should be solved

BT repositories typically store bugs and
enhancements. Furhteremore, bugs may relate to minor
typographical errors. The bugs relevant to SDP are the
ones that represent a loss of functionality which is
indicated by severity level above trivial. Since we need to
linking the bug to source code, the bugs need to be solved
in order to be present in the commits from the SCM
repository. A BT tabular report, as presented in From 1,
for all releases of each project is required with following
parameters:

 Bug Status: resolved, verified and closed
 Bug Resolution: fixed
 Bug Severity: blocker, critical, major, normal

and minor

This way we bypass all the unconfirmed, invalid or
duplicated defects, defects that are not solved or that
could not be solved and requirement requests.

We evaluate the impact of these issues by comparing
the number of bugs that satisfy our parameters to the
number of bugs that satisfy opposite parameters (Bug
Status: unconfirmed, new, assigned and reopened; Bug
resolition: invalid, wontfix, duplicate, worksforme,
moved and not_eclipse; Bug severity: enhancement, and
trivial).

SCM Repository Collection: The second data
collection phase is to find the SCM repository for the
chosen project in GIT. We need stable releases of the
project for future analysis of software metrics. If issues
2.1 and 2.2 are both satisfied, there remains only one

issue, related mostly to large projects and we evaluate it
by counting the number of such projects.

Issue 4.1 The project may be divided into several sub-
repositories within the foundation’s top level GIT
repository

Bug - Commit Linking: The most important data
collection phase is to link the BT and SCM repositories
because it yields the number of defects per software
module. Every source code change is stored within
commits and each commit has the developers description
of the change within a message. The linking is done by
searching the Bug ID in the commit message. We use
Form 2 to record successful linking.

Issue 5.1 The Bug ID number may be a part of larger
block of characters
Issue 5.2 The Bug ID may be present in more than one
commit

The issue of varying length of the Bug ID presents an
obstacle to automatic data collection. It is important to
search for the exact match of the Bug ID. We evaluate its
impact by calculating the percentage of the Bug IDs we
can link with the simple search and the strict search we
mentioned. The second issue is because of the nature of
complex bugs that require a lot of change, possibly in
different subrepositories, and because of the loose
development rules in the community. We evaluate it by
comparing the number of linked commits and the number
of bugs.

Source Code Analysis: This phase consists of
calculating the product metrics of all the source code files
in each release of the chosen project. The SM tools are
used for that purpose. All the product metrics obtained by
these tools are collected in Form 4.

Figure 2. The impact of identified issues on each data collection phase

SDP Dataset Generation: The final phase of our data
collection procedure is to construct the final SDP dataset
in the Form 5, combining the output of the previous two
phases.

Issue 6.1 The file identifier needs to be unique for the
Source Code Analysis and the Bug - Commit Linking
Issue 6.2 File – Bug cardinality is many-to-many
Issue 6.3 Single file can be changed in multiple commits
that are linked to one bug

The unique identifier of any file present in one release
is its File Path. In order to cope with issue 6.1, the file
path was extracted from commits in the same way it was
extracted in the output of SM tools. Neglecting this issue
would make it very difficult to connect the previous two
phases. Due to issue 6.2 and 6.3, we count the number of
distinct File Path and Bug ID (FB) ordered pairs in Form
3. To evaluate the potential impact of issue 6.2, we
compare the number of FB pairs with the number of
linked files and bugs. The impact of issue 6.3 will be
evaluated through the number of FB duplicates.

IV. RESULTS

The literature and Internet survey found 35 SM tools
(12 from [8] and additional 23 from the Internet search)
and we analyzed them all. The tools were compared
against demands presented in subsection III-F. In the first
stage, we analyzed the tool descriptions. In the second
stage, we anylzed the remaining tools more thoroughly in
usage on a sample project through participants’ seminars.
In the third stage, we tested the tools in large scale
manual data collection. 19 tools passed the first review
stage, 5 tools passed the second and only 2 remained in
the end. Here is a full list of tools we analyzed:
iPLASMA, inFusion, inCode, CodeCover, JavaNCSS,
ckjm, Understand, Borland Together, CodeSonar Static
Analysis Tool, CodePRO Analytix, Metrics 1.3.8, Moose,
JavaMetrics, Testwell CMT ++ (CMTJava), JDepend,
Dependency Finder, JarAnalizer, CCCC, Source Code
Metrics, Classycle, Sonar, Resource Standard Metrics,
Jhawk, Jtest, SonarGraph, PMD, JDiff, CodeCount,
LocMetrics, CodeAnalyzer, JMT, Jmetric, ES2, Xradar,
Essential Metrics. Table 1 presents 7 categories of
disqualifying factors we applied and the number of tools
reject due to each of them.

The tools that were tested in use are: CodePRO
Analytix, Metrics 1.3.8, Source Code Metrics, Jhawk and
LocMetrics. Metrics 1.3.8. required projects to be built
and Source Code Metrics required the restart of NetBeans
for each following analysis. A great number of analyses
dictated to exclude these two tools. We did not manage to
automate the Code PRO Analytix and since it was
incapable of analyzing whole project releases it was
discarted as well. The LOC Metrics1 proved to be a fast
tool offering a sample of 10 simple product metrics and
the JHawk2 enriched the set of metrics with additional 40.
The complete set of software product metrics provided by
these two tools is wider than in any other related study.

1 http://www.locmetrics.com/

2 http://www.virtualmachinery.com/jhawkprod.htm

The evaluation of data collection issues is presented in
tables 2, 3, 4, 5 and 6. Table 2 reveals that not all of the
Eclipse projects are present in the GIT repository. We
analyzed 85 different Eclipse projects from BT
repository. We found 76 of them in SCM repository,
indicating that the issue 2.1 is rarely present.
Furtheremore, for 51 projects we managed to find release
tags in SCM that correspond to release numbers from BT.
It shows the naming convention of releases are not
always consistent and that issue 2.2 could impact greater
number of projects. Finally, we found that 37 projects are
distributed in more than one sub-repository, showing that
it is important to be aware of issue 4.1. Table 3 presents
the importance of choosing the appropriate parameters
while searching for bugs in the BT repository. We
compare the number of bugs collected by Our parameters
(subsection III-F-Bug repository collection) and by other
parameters. We can expect a completely different SDP
dataset if we do not limit the Bug Resolution to fixed
only. On the other hand, bugs with incomplete data
(expected by Form 1) are rare and could cause
insignificant bias. The inclusion of bugs of opposite
severity may cause from 10% - 15% bias in the number
of bugs. For the Mylyn project, the bias rises to 45%.
Table 4 demonstrates the need for a precise search
criterion for establishing the bug - commit links. A great
number of incorrectly linked bugs may occur if we
simply search for the Bug ID as a series of digits (Simple
Search) and not defining its surrounding characters (Strict
search). The bias in the linking rate from 7% - 40%
proves issue 5.1 to be very important. Table 5 reveals that
a single bug ID may be linked to more than one commit
and that it is highly important to be aware of issue 5.2.
Table 6 reveals that the number of FB pairs is much
greater than the number of files that were linked to bugs,
proving that the majority of bugs is located in a smaller
part of the software. We also notice that the number of
linked files can be both greater (PDE, BIRT, Mylyn) or
lower (JDT, Platform) than the number of linked bugs,
proving that issue 6.2 needs to be taken into account. The
number of FB pair duplicates is presented in table 7. We
performed additional manual root cause analysis of a
subset of FB duplicates. We discovered that some FB
pairs even occurred more than twice and their cause was:

TABLE I. SM TOOLS REVIEW - ISSUE 1.1

Requirement Important characteristics
Rejection

rate

1 Availability of tool 5

2 Programming language - java 0

3 Level of granularity - files 7

4
Software metrics - product

- too few metrics
4
4

5 Usability - large input 3

6 Usability - output reports 1

7
Other - older version of another
Other - not a tool, a platform
Other - trial version too limited

2
2
2

 • There are both a bug test and a bug fix reported
for the same FB pair

 • There are 2 bug fixing commits reported in the
SCM for the same FB pair

 • There had been reported one or two temporary
bug fixes before the final bug fix was reported

 • There are both a bug fix and a revert bug fix
reported for the same FB pair

 All the reasons we found show us that only the final
bug fixing commit should be regarded as relevant

V. THREATS TO VALIDITY

There are two major threats to validity to our
experiment: the specificity of data (only several largest
Eclipse projects written in java stored in Bugzilla and
GIT) and the possibility of human error from the
participants. However, observer triangulation and the
partial automation of the process reduced this the human
error influence and most recent experiments showed the
procedure can be also successfully used for other projects
from other foundations, like Mozilla or Apache. In
contrast to usual data collection procedures, we
welcomed the differences in collected data from different
participants because those were indicators of issues we
need to address.

VI. CONLUSION

The goal of this exploratory research was to identify
as many issues that may cause bias in the SDP data
collection procedure. Our survey of related research and
other sources in this area available on the Internet

resulted in a preliminary data collection protocol. That
protocol, along with detailed descriptions was given to 12
participants of our experiment and they were assigned 5
major Eclipse projects. Their output data was then
analyzed and validated through a number of metrics and
manual inspections.

As an answer to our RQ1, we identified and
quantified several important issues that may become a
significant source of bias in the SDP dataset. The
collection starts with the choice of proper open source
projects that contain their data in the BT and the SCM
repositories. Some larger projects contain several SCM
subrepositories. Relevant bugs are the resolved, verified
and closed ones with the resolution fixed and severity
level above trivial because SDP requires only those that
caused a loss in functionality. Linking between bugs and
commits must be done in a carefully defined strict
manner because otherwise we might obtain bias in
linking rate. Multiple links between bugs and commits
(i.e. files) and duplicated file-bug links can be expected.
We also answered our RQ2. After we thoroughly
analyzed 35 SM tools, we identified LOC Metrics and
JHawk as the most appropriate for our automatic data
collection tool [17]. These two SM tools provide us with
a respectable subset of 50 product metrics and are
suitable for automating the data collection process.

Finally we find evidence that human error is widely
present in development repositories. Allthough the Bug ID
is a unique identifier of a software defect, it cannot be
always linked to the commit that made it fixed. Therefore,
a certain number of bugs remains untraceable and
becomes an issue in the phase of determining the non-
fault-prone files as well as the fault-prone ones. However,
there are indications that some versions suffer a lot less
from this problem and a more detailed analysis is intended
for our future work.

ACKNOWLEDGMENT

The work presented in this paper is supported by the
University of Rijeka research grant Grant 13.09.2.2.16.

TABLE II. EVALUATION - ISSUES 2.1, 2.2 AND 4.1

Demand Important characteristics
Acceptance

rate

- Total projects analyzed 85

1 Present in BR and SCM repository 76

2 Corresponding release tags 51

3 >1 SCM subrepository 37

TABLE III. EVALUATION - ISSUES 3.1, AND 3.2

Bug
requirement

Number of bugs per project
JDT PDE Platform BIRT Mylyn

Our paramaters 20353 7318 38511 13071 3492

Opposite
severity

2875 895 4604 1243 1581

Opposite status 0 0 0 0 0

Opposite
resolution

16488 3570 32582 3059 1909

Incomplete bug
data

64 26 108 7 1

TABLE IV. EVALUATION - ISSUE 5.1

Linking
Technique

Linking rate per project
JDT PDE Platform BIRT Mylyn

Bugs: 18696 6822 34641 8101 2739

Simple Search: 80.5% 65.8% 80.7% 59.8% 52.3%

Strict Search: 72.0% 58.6% 71.2% 18.9% 16.1%

TABLE V. EVALUATION - ISSUE 5.2

Number of
Multiple bug-commit links per project

JDT PDE Platform BIRT Mylyn

Bugs linked: 13468 3995 24663 1532 441

Commits linked: 17667 7573 29669 2127 3002

TABLE VI. EVALUATION - ISSUE 6.2

Number of
Multiple file-bug links per project

JDT PDE Platform BIRT Mylyn

Bugs linked: 13468 3995 24663 1532 441

Files linked: 12080 6629 15084 4273 975

Bug-file links: 25476 16595 23784 6663 1258

TABLE VII. EVALUATION - ISSUE 6.3

Number of
Duplicated file-bug links per project

JDT PDE Platform BIRT Mylyn

FB duplicates: 768 1233 903 4 0

REFERENCES
[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A

systematic literature review on fault prediction performance in
software engineering. IEEE Trans. Softw. Eng., 38(6):1276–
1304, Nov. 2012.

[2] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic
and comprehensive investigation of methods to build and evaluate
fault prediction models. J. Syst. Softw., 83(1):2–17, Jan. 2010.

[3] T. M. Khoshgoftaar and N. Seliya. Comparative assessment of
software quality classification techniques: An empirical case
study. Empirical Software Engineering, 9(3):229–257, 2004.

[4] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect
prediction approaches: A benchmark and an extensive
comparison. Empirical Softw. Engg., 17(4-5):531–577, Aug.
2012.

[5] J. M. González-Barahona and G. Robles. On the reproducibility
of empirical software engineering studies based on data retrieved
from development repositories. Empirical Softw. Engg., 17(1-
2):75–89, Feb. 2012.

[6] D. Rodriguez, I. Herraiz, and R. Harrison. On software
engineering repositories and their open problems. In Proceedings
of RAISE ’12, pages 52–56, 2012.

[7] M. J. Shepperd, Q. Song, Z. Sun, and C. Mair. Data quality: Some
comments on the nasa software defect datasets. IEEE Trans.
Software Eng., 39(9):1208–1215, 2013.

[8] T. Galinac Grbac, P. Runeson, and D. Huljenic. A second
replicated quantitative analysis of fault distributions in complex
software systems. IEEE Trans. Softw. Eng., 39(4):462–476, Apr.
2013.

[9] P. Runeson and M. Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Softw.
Engg., 14(2):131–164, Apr. 2009.

[10] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D.
C. Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary
guidelines for empirical research in software engineering. IEEE
Trans. Softw. Eng., 28(8):721–734, Aug. 2002.

[11] V. R. Basili and D. Weiss. A methodology for collecting valid
software engineering data. IEEE Computer Society Trans.
Software Engineering, 10(6):728–738, 1984.

[12] T. F. Bissyande, F. Thung, S. Wang, D. Lo, L. Jiang, and L.
Reveillere. Empirical evaluation of bug linking. In Proceedings
of CSMR ’13, pages 89–98, Washington, DC, USA, 2013. IEEE
Computer Society.

[13] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: Recovering
links between bugs and changes. In Proceedings of ESEC/FSE
’11, pages 15–25, New York, NY, USA, 2011. ACM.M. Young,
The Technical Writer's Handbook. Mill Valley, CA: University
Science, 1989.

[14] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen.
Multi-layered approach for recovering links between bug reports
and fixes. In Proceedings of FSE ’12, pages 63:1–63:11, New
York, NY, USA, 2012. ACM.

[15] A. Sureka, S. Lal, and L. Agarwal. Applying fellegi-sunter (fs)
model for traceability link recovery between bug databases and
version archives. In Proceedings of APSEC ’11, pages 146–153,
Washington, DC, USA, 2011. IEEE Computer Society.

[16] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu. Fair and balanced?: Bias in bug-fix datasets. In
Proceedings of ESEC/FSE ’09, pages 121–130, New York, NY,
USA, 2009. ACM.

[17] G. Mauša, T. Galinac Grbac, and B. Dalbelo Bašić. Software
defect prediction with bug-code analyzer - a data collection tool
demo. In Proc. of SoftCOM '14, 2014.

