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Abstract—There exists a huge amount of vertical applications
that are developed for isolated computing environments. Due
to increasing demand for additional resources there is a clear
need to adapt these applications to the distributed environments.
However, this is not an easy task and numerous variants are
possible. Moreover, in this transition a new quality requirements
become important, such as application elasticity. Application
elasticity has to be built into a software system to enable smooth
cost optimization at the run-time.

In this paper, we provide a framework for evaluating dif-
ferent transformation variants of vertical Java EE multi-tiered
applications into elastic cloud applications. With support of this
framework the software developer is guided how to transform its
application achieving optimal elasticity strategy. The framework
is evaluated on slicing and evaluating elasticity of existing SaaS
multi-tiered Java application used in Croatian market.

Keywords—cloud computing; web application elasticity; web
service deployment;

I. INTRODUCTION

Software engineering discipline aims to develop methods
and tools to produce quality software. Elasticity has been just
recently recognized as one of the important quality attributes
for the cloud software systems [1]. It is a software attribute
providing ability to efficiently adapt to dynamically scratched
resources, coined by cloud provides that in ’as a service’
paradigms offer elastic on-demand resources based on the
’pay-as-you-go’ (PAYG) concept. In such an environment the
term elastic imposes strong requirements on software.

One of the challenges of cloud is to provide dynamic
allocation of resources according to workload changes and
within Service Level Agreement (SLA) levels but with op-
timized resource costs. To maximize PAYG benefits, elasticity
attribute should be closely related to costs [2]. It has been
widely discussed its definition in terms of software quality
attributes and how to incorporate this new quality perspective
into existing list of well known software quality attributes.

We address the elasticity from the software engineering
perspective and propose a software design solution to imple-
ment this attribute into a software system. We hypothesize
that the structure of software distribution across the logical
nodes may influence software system elasticity. Distributed
system may be easier to expand and scale then vertical system
- a tightly coupled application developed to work on single

machine only. Especially, from the performance and resource
utilization costs perspective, the way how the application is
distributed may provide some benefits for easier dynamic
resource scaling.

Our approach is to provide the necessary insights for
finding an optimal structure in distributing an existing ver-
tical (monolithic) application. The design of optimal software
structure with regards to elasticity is guided by the framework
provided in this paper.

The main contributions of our paper are the following:

• an automated mechanism for observing performance
of different distributed slices of an existing vertical
applications and identifying bottlenecks;

• a decision support system for structure design in
transformation process of vertical applications.

In this paper we present a framework that guides de-
velopers aiming to transform their vertical applications into
elastic cloud applications providing run-time cost optimization.
The framework is implemented through Java APIs which are
used with existing application to control its distribution. Our
framework targets multi-tier web applications implemented
by Java EE specification. Only applications without server-
side presentation tier (e.g. Java Server Faces) are supported;
exposing their functionality through web service interface.
Such server-side applications are typically used in modern
SaaS software where presentation tier is located on client side.
Instances of such applications include modern web and mobile
applications or applications with no presentation tier used to
expose business APIs. Additionally, to facilitate distribution,
only stateless Java Beans are analyzed, which are common in
described applications for easier scaling and management.

Proposed framework is thus intended for smaller business
applications that require scaling and are planned to be rewritten
for distributed architecture such as cloud. By using the frame-
work, application developer is provided with functionality to
test different slicing possibilities together with information
regarding total cost and performance of each solution. Cost
is regarded as overall leased hardware cost at a given, and
performance is evaluated as maximal service rate achieved in
each slicing configuration. Loosely coupled applications are
better suited and will produce better evaluation results with
minimum modification.



Fig. 1: Slicing occurs at middle Business Tier

From software development perspective, decoupling slices
from existing applications has thoroughly been studied [3], so
some effort should be expected from application developers
in order to fully utilize this framework. Knowledge about
application architecture and choosing viable set of slicing
points is a prerequisite, and not in scope of this paper.

The remainder of this paper is structured as follows: The
proposed framework is described in Sect. II. In Sect. III we
provide implementation details for the framework. In Sect. IV
we evaluate proposed framework on existing monolithic appli-
cation. Related work is given in Sect. V. Finally, concluding
remarks and future study areas are presented in sect. VI.

II. FRAMEWORK

We propose a framework that facilitates software archi-
tectural decisions on how to slice vertical multi-tiered web
applications into separated web services that are distributed
over network to provide effective scaling. Our framework
mainly concentrates on slicing at application tier (also referred
to as business or domain tier), thus targeting pieces of domain
business logic (Fig. 1). It does not address client tier or
persistence (database) tier. We believe that the main point
of slicing should occur at domain logic tier distributing the
application to standalone services. This makes our framework
adequate for web applications without thin or no web tier at all,
exposing web services directly to client tier. Once the optimal
slicing is chosen at business tier, manual redistribution of data
in persistence tier is required. Techniques like data replication
and sharding are typically used. Slicing at persistence tier
requires careful re-design and migration plans which is not
in the scope of this work. We leave the starting decision
for picking the possible slicing points to the developers and
concentrate on evaluating elasticity concerns of every gener-
ated deployment option based on these slices. Overall service
latency can drastically differentiate with every design change
at persistence tier. For such cases, our tool can also facilitate
regression testing.

We decompose our solution into four tasks:

• slicing of vertical application into self contained sep-
arated slices that could be deployed as web services
on separate VMs,

• generating a number of deployment variants as possi-
ble deployment solutions; by deployment variant we

Fig. 2: Schematic of elastic system

refer to placement decision for each service and its
invocation type (local or remote via SOAP),

• slice assessment mechanism in terms of identification
of bottleneck slices, resource demands and scaling
trends with help of operational profile of existing
vertical application,

• performance and cost evaluation for all variants and its
comparison with respect to cloud provider constraints.

In order to facilitate the problem of application slicing like
building and packaging all the different slices and determining
dependencies for each slice, this framework uses an alternate
approach. Actual software artifacts are not physically sliced,
but rather logically. Each slice contains whole application
package where unnecessary parts belonging outside of the
current slice, are never being accessed. The purpose of this
framework is exploration and evaluation of different distribu-
tion variants so this solution proved practical and fast.

A. Framework notation

To describe the framework we use a high level schematic
of the considered system given in Fig. 2. The user (customer)
on the left-hand side of the figure is sending requests for
processing of certain application to the cloud on the right-hand
side of the figure, and the task of the service provider at the
center of the figure is to organize the usage of cloud resources
for processing. The goal is to do that at lowest possible cost,
but meeting the quality of service requirements agreed with
users (customers) in a service level agreement (SLA).

Vertical application that is processed for each process
request can be divided in several services. These services are
independent of each other and can be processes concurrently
in the cloud if resources are available.

B. Simulation

On the other side, there are several virtual machines in
the cloud, which can be used to process the application or its
services. We denote these virtual machines by VMm, where
m = 1, . . . ,M , and M is the maximal number of virtual
machines that can be used in the cloud.

The cost of virtual machines is agreed by a pay as you go
(PAYG) contract between the service provider and the cloud



(a) Development-time view
(b) Run-time view

Fig. 3: Overview of Slicing framework

provider. That means that the service provider can use virtual
machines at different load levels. For each level there is a fixed
price per hour. If we denote the load levels of each virtual
machine by 1, 2, . . . , L, where L is the number of levels, then
the cost for lth level is denoted by Cl. Of course, higher loads
are more expensive, so that

C1 < C2 < . . . < CL.

Note that we are assuming the same prices per level for all
virtual machines VMm. For this exposition we introduce the
0th load level to be the load level with no load at all, that
is, the virtual machine at 0th load level is not used. We set
C0 = 0 as the cost of zero load is zero.

By the contract, the virtual machines are payed per hour,
which means that we may specify freely the number of
machines in use and their load level which is payed according
to fixed costs Cl. In this way we can adjust to different
intensity of incoming requests during the day. We form a cost
matrix C with M rows representing virtual machines and 24
columns representing the hours in a day. The entry cij in the
ith row and jth column in the cost matrix C is the cost of
the load level at which the virtual machine VMi is operating
in the jth hour of the day (i.e., between j − 1 o’clock and j
o’clock). The total cost of operation Ctotal for a day in which
the cloud resources are used according to the cost matrix C is
simply the sum of all entries in C, i.e.,

Ctot =

M∑
i=1

24∑
j=1

cij . (1)

From the cost matrix we can easily see how each VMm is
used during the day by looking at mth row of C. The columns,
on the other hand, tell us the load levels of all virtual machines
during each hour in a day. Note that cij = 0 means that ith
virtual machine is not in use between j − 1 o’clock and j
o’clock.

The services of the application can be processed at differ-
ent virtual machines. The scheme saying which services are
processed at the same or different virtual machines is called the
service deployment strategy. Let S denote the set of services.

The service deployment strategy is just a partition of this set
into disjoint subsets. Each subset of services is processed at
the same virtual machine, and services in different subsets of
the partition are processed at different virtual machines.

The service deployment strategy is fixed per each evalua-
tion run, and can not be changed during the operation. In this
paper we investigate how different deployment strategies com-
bined with the usage of virtual machines based on the known
incoming process request distribution during the day influence
the total costs of operation assuming the requirements of SLA
are met. This kind of analysis is useful to the service providers
when developing the application because they can plan the
division into services according to the results of such analysis.

In order to perform slice assessment with performance
and cost evaluation, we need to simulate the operation of
the service provider during a typical day. To achieve that,
information about the distribution of incoming process requests
is required. For each simulation we fix a service deployment
strategy, say

S =

d∐
k=1

Sk,

where Sk are the disjoint subsets of services forming a partition
of the set S of all services. We also fix a cost matrix C,
which is, in other words, the plan of usage of virtual machines
during the day. The total cost of such operation is just the value
Ctot, obtained from the cost matrix in formula 1. However, the
question is whether such operation will satisfy the quality of
service requirements specified in the service level agreement
between the consumer and the service provider.

These quality of service requirements could be for example
an upper bound on response time or total processing time of
each request, or a lower bound on the percentage of requests
that are not answered due to congestion. These are studied
using the simulated requests. To make this work, one needs
to know the processing time of every subset Sk, and use the
queuing theory to obtain simulated waiting times and virtual
machine load. Using these parameters, the requirements can
be checked. Such simulated operation for a day should be
simulated many times to see that certain service deployment



strategy with certain cost matrix would satisfy the requirements
in sufficiently high percentage of times (specific values, of
course, depend on the service provider’s policy).

Finally, among all possible service deployment strategies,
one may find the one which meets the quality of service
requirements at lowest possible cost. This can help application
developers to plan the division of an application into services
in such a way that the operation costs can be minimized. On
the other hand, if the software deployment strategy is already
fixed, our model can be used to find the way of using the cloud
resources so that the user requirements are met at the lowest
possible cost.

III. IMPLEMENTATION

We developed proposed framework as an application trans-
formation developer kit for Java web applications. It provides
APIs to indicate which existing code fragments should be
transformed to enable remote invocation. All standard Java
Bean1 classes are valid candidates for such transformation.
This development kit serves application developers to test their
existing application behavior in a distributed deployment as an
elastic application - it is primarily used to obtain the best cost
effective scaling method based on the future needs.

Fig. 3a displays the architecture overview of slicing frame-
work solution. There are two operating parts of slicing frame-
work: a controller part that is integrated within existing ap-
plication and a central self-contained web application with
APIs for configuration and coordination of controllers. This is
displayed in Fig. 3b where Slicing Web Application configures
each controller in order to achieve desired deployment. We
base our implementation on the monitoring and analysis tool
MELA [4] collecting and aggregating selected metrics for
every running VM instance. MELA monitoring and a load
balancer are automatically configured according to current
deployment.

A. Slicing of vertical application

Implementation is based on the Java EE platform beginning
from version 6. The J2EE platform is a Java environment that
provides a run-time infrastructure for hosting applications and
a set of Java extension APIs to build distributed applications.

Slicing API transforms Java EE Bean class from existing
application into separated self contained web service by adding
adequate code. Such code directs the framework to provide

1JavaBeans specification is available at http://www.oracle.com
/technetwork/java/javase/documentation/spec-136004.html

// IInvoiceService.java

@ElasticService
@WebService(targetNamespace=...)
public interface IInvoiceService {
...

}

Fig. 4: Annotations required for class interface

necessary communication capabilities outside its logical node
(e.g. virtual machine). We illustrate our approach on example
of InvoiceService.java Java EE Bean class. To make this
class invocable as a web service outside of current Java
Virtual Machine (JVM) one should annotate it as @WebService
annotation which instructs the Enterprise Java Beans (EJB)
container to automatically construct the necessary WSDL file
and provide this class as an SOAP web service. This example
is presented in Fig. 4.

Our framework provides some additional annotations:
@ElasticServiceProvided and @ElasticService. @ElasticSer-
vice annotation signals the framework that current Java Bean
interface should be considered as an elastic service such that
framework can experiment with its deployment. For such
marked service, framework provides an additional configura-
tion to specify deployment variants to be used across experi-
ments.

To invoke a service as a dependency from another class,
besides the standard @Inject annotation, provided by Java EE
specification to instruct EJB container a need to instantiate
or delegate an instance in run-time, our implementation also
provides additional @ElasticServiceProvided annotation so we
can override the default EJB procedure and provide class
instance based on current selected deployment configuration.
This is noted in Fig. 5. Our framework will instantiate a local
class or automatically create a remote client communicating
with remote service, depending on current deployment con-
figuration. Dependent services which are annotated are used
the same way whether they are residing locally in same JVM
or remote on another JVM/VM. E.g. in InvoiceService.java
both FiscalizationService and DataService are marked elastic,
so our framework has the possibility to provide local service
instances from within same JVM, or remote services residing
on different VM. We can observe that in createInvoice method
code dealing with invocation of the FiscalizationService re-
mains the same.

All possible deployment variants are obtained from set
of services which developer has chosen to annotate with
@ElasticService. In Sect. II-A we denoted this set as S =
{S1, S2, ...Sn} , n = |S|. Next, we arrange these services in
disjoint sets. We define such set as Elastic Group (EG): a set
of services that are to be deployed and scale together. Only
one EG is deployed on each VM, meaning that deployment
variant - D, is one possible division of S to EG sets. A set of
all possible deployment variants, denoted as D, correlates to
all possible combinations of forming EG sets.

Even a slightly complex Java application yields very large
amount of possible deployment variants. To obtain the total
number of deployments we need to count all possible partitions
of set S. Formula 2 uses Stirling number of second kind [5]
to calculate this.

|D| =
n∑

k=1

1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n, n = |S| . (2)

To narrow down the number of solutions, we provide fur-
ther configurations capabilities to denote which services should
always remain inside same EGs. These could be services that



// IInvoiceService.java
@Stateless
@WebService(...)
public class InvoiceService implements IInvoiceService {

// service dependencies
@Inject @ElasticServiceProvided IFiscalizationService fService;
@Inject @ElasticServiceProvided IDataService dataService;

public CreateInvoiceResponse createInvoice(CreateInvoiceRequest req) {
// calling other service
fiscalizationService.fiscalizeInvoice(request);

}
}

Fig. 5: Annotations required for class implementation and dependencies

Fig. 6: Framework can use local or remote service

developers decides to be tightly connected and is reasonable for
optimal performance to keep them together for lowest possible
invocation latency.

Scaling is thus achieved simply by replicating VMs. EGs
also define an important implication on dependency resolving.
If Si invokes Sj then this invocation can be: a) local, if Si

and Sj reside in same EG group, thus same VM, or b) remote
via SOAP, otherwise. Slicing framework controllers assert that
correct invocation is being made, as shown in Fig. 6.

B. Variant generator

We developed a variant generator as REST service with
Java API for generating a number of deployment variants.
Each variant is obtained by number of different grouping
combinations of different slices, obtained as explained in
subsection III-A. Each variant is deployed to minimal number
of VMs (one per group) and then MELA Java APIs are applied
to monitor and analyze elasticity criteria. To test elasticity,
SYBL is used to define elasticity triggers on when to perform
certain scaling actions. SYBL functionality is explained at

[6]. We created a SYBL configuration to be used across
testing where we defined a cost-effective scaling based on
VM load thresholds. There are two basic scaling actions for
every EG: (1) scaleIn for releasing a VM when load drops
below defined level, and (2) scaleOut for running another VM
instance when load is above upper threshold. For this research,
we applied this simple SYBL rules across all tests, developers
can experiment with different SYBL configurations for each
variant by rerunning tests with different SYBL configurations.
For future version of framework, we plan semi-automatic
support for such experiments. Variant generator is accessed
with HTML user interface provided by Slicing Framework
Web Application. Same interface is used to schedule and run
tests.

C. Deployment variant performance evaluation

Implementation of our framework uses MELA to capture
performance metrics (response time, throughput, CPU usage)
across different service levels (down to specific VMs) so that
many aspects of scaling can be evaluated accordingly. Also,
by using MELA measurements one can easily balance between
VM local and application global performance and validate each
solution thoroughly. From performance observations of global
application performances achieved in different deployment
variants and local slice performances achieved by each slice
in particular deployment variant one can identify the most
effective set of elastic groups of application slices (EGs).
Different elastic groups or combinations of slices can be
evaluated separately.

For the evaluation purpose we developed a simulator API in
Python programming language that generates Poission distri-
bution of input requests and it is capable to send heterogeneous
requests with different probabilities. The request rates are
defined by developers and should be based on the monitoring
results from current vertical application in use. Ratios for
different transactions should also be obtained accordingly.

IV. EXPERIMENT

We demonstrate the use of our framework on a prototype
built as viable subset of an actual Java EE application. This
SaaS cloud application is used by a large base of customers



Fig. 7: Architectural overview of Cash Register application

in Croatia to issue invoices in retail. We will refer to it as
Cash Register Solution (CRS). Currently, the server-side of
CRS is a monolithic Java EE application (Fig. 7). We apply
the framework to CRS application to make certain classes
available for remote invocation and distribute the system across
different VMs. CRS is built by Superius, a small company
located in Croatia which observe a need to make its CRS
application service-based and distributed for better control of
overall service, better elasticity control and most importantly
to share underlying services in CRS application and provide
integration with other applications in their SaaS portfolio.
Basically, Superius is targeting a more service-oriented ap-
proach in building SaaS [7]. They provide CRS as a SaaS
service on Cloud resources for dynamic amount of clients.
Currently, CRS application is not elastic and runs on a set of
dedicated servers optimized to satisfy demands in peak hours.
Off-peak periods reveals under-utilization of resources yielding
unnecessary costs.

It is a challenge for the small software development com-
pany to transform its vertical applications, mainly because
of lack of knowledge and experience in building a complex
distributed and elastic system. Quite often these companies
are set on a path of trial and errors. By using the proposed
framework, developers can get quicker and better insights into
performance and elasticity implications of distributing their
applications in different ways.

A. Test-bed setup

Testing platform is set up to resemble Amazon business
model, it has a PAYG service issuing VMs at hourly cost. The
elasticity strategy must be implemented in conformance with
existing SLAs for CR application. These include Service Level
Objectives regarding maximum response time and overall ser-
vice availability. Upper bounds for response time are specified
with two parameters: a percentile γ% and Tr, meaning that
γ% of the time customer will receive response in less than Tr
[8]. These SLA criteria have been configured and monitored
by MELA.

All the results are gathered by using a test-bed setup over
a set of VMs running on OpenStack2 platform. OpenStack
is hosted on dedicated server with Intel Xeon E31230 Quad-
core processor and 8GB of RAM. These are dedicated servers

2OpenStack cloud platform - available at http://www.openstack.org/
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Fig. 8: Real production request rate distribution for Cash
Register application and request rate classes

similar to ones used to deploy production version of CRS
application. HAProxy3 has been used as a configurable load
balancer. Each deployment variant that is tested means auto-
matic alteration of HAProxy configuration to enable desired
service distribution.

B. Current application analysis

We measured current average daily request arrival rates
from our production system, displayed at Fig. 8. Arrival rate
is significantly higher around normal working hours in retail
business, reaches its maximum around noon, and decreases
towards evening. This kind of load is a common example for
reducing costs by introducing elasticity capabilities. Based on
this input and available test-bed hardware, we classify arrival
rates λx at three classes modeled similar to production usage:

λlow = 10req/s, λmid = 50req/s, λhigh = 70req/s

All tests are conducted by using a set of request types modeled
after analyzing current production load: createInvoice request
is invoked with a probability of p1 = 0.217, getServiceStatus
request with a probability of p2 = 0.52, getData request with
a probability of p3 = 0.135, and listInvoices request with a
probability of p4 = 0.128.

C. Slicing the Cash Register application

We have chosen these four services to be tested with remote
usage on different deployments:

• InvoiceService (IS) - main service for issuing retail
invoices. This service receives the request for invoice
with selected products and customer information and
is used to generate all the calculations and persist
invoice to database.

• FiscalizationService (FS) - Croatian laws regulate that
invoices issued in retail with cash as payment type
should be sent to a central fiscalisation web service
provided by government where every invoice receives
a unique identifier. FS is a delegate for this process.

3HAProxy - available at http://www.haproxy.org/



TABLE I: Deployment variants used in testing.

Variant EG1 EG2 EG3 EG4

D1 IS, FS, DS, SS - - -

D2 IS FS, DS, SS - -

D3 IS DS FS, SS -

D4 IS, FS DS, SS - -

D5 IS FS DS SS

• StatusService (SS) - this service is used by Android
and PC client tier to check various critical operational
data such as invoice numbers, time synchronization
with server time, and to checking service and network
availability.

• DataService (DS) - this service is also used by the
clients to gather necessary data for creating an invoice.
This service provides all the customer and product
information.

D. Deployment variants

By using these annotated classes, framework generated
15 possible deployment variants. For brevity, we will further
examine five most interesting and characteristic variants to
state the importance of careful distribution and deployment
decisions. Fig. 9 shows the dependency graph between these
four services, and Table I gives the formed groups of services.

E. Results

For each variant, we configured MELA to monitor end-
to-end response times for three incoming request rates values:
low, mid and high traffic. We also measured overall perfor-
mance expressed as average service rate across testing period,
measures in number of successful responses per time unit.
Results are given in Table II. For each arrival rate class, a
number of VMs running at that time is given and total costs
for 24 hours of operation Ctot by applying the cost matrix
introduced in Sect. II-B. We also measured maximal service
rate each service variant can provide under selected number
of VMs. Costs are modeled following Amazon EC2 pricing
chart4.

4Amazon EC2 pricing chart is available at http://aws.amazon.com/ec2/
pricing/

Fig. 9: Dependency graph between selected services

D1 D2 D3 D4 D5

5

10

15

Pr
ic

e
pe

r
24

ho
ur

s

Fig. 10: Comparison of price for each 24-hour deployment
variant

D1 D2 D3 D4 D5

20

40

60

80

100

M
ax

th
ro

ug
hp

ut
at

st
at

e
(r
es
p
/s

) low
mid
high

Fig. 11: Comparison of performance in each deployment
variant

Results indicate that total costs for Cash Register migration
to distributed deployment can be up to 32% higher (Fig. 10) in
most expensive deployment variant D5 where each service is
isolated, but we observe no improvement in performance and
quality (Fig. 11). This is primarily not because of the overhead
that serialization and communication over web service pro-
tocols are bringing, but mainly because of over-provisioning
meaning that EGs used a small percentage of resources given.
However, if a system is able to change deployment variant
in run-time at lower traffics these costs can be significantly
reduced. A new reasoner for elasticity is thus required, one that
could apply different deployment variants in order to further
reduce operational costs. By using SYBL we could manually
define switchDeployment action to change composition in run-
time, or isolateService and consolidateServices to divide or
group services.

We observe that for CR application, the bottleneck is the
InvoiceService, it is the only service that required significant



TABLE II: Overall service results for different deployment variants

Variant Di Arrival
rate
(req/s)

# of VM (EG1) # of VM (EG2) # of VM (EG3) # of VM (EG4) Max
Service
rate

(response/s)

Avg.resp.time Cost/h Total cost
per 24h -
Ctot ($)

D1

low 1 - - - 24.25 384.72 0.154
9.702mid 3 - - - 68.06 118.37 0.462

high 4 - - - 90.04 101.62 0.616

D2

low 1 1 - - 24.28 374.12 0.231
9.625mid 2 1 - - 52.66 187.52 0.385

high 3 2 - - 70.68 110.12 0.616

D3

low 1 1 1 - 27.29 310.21 0.308
10.934mid 2 1 1 - 52.43 165.48 0.462

high 3 1 1 - 72.33 105.32 0.616

D4

low 1 1 - - 30.61 222.02 0.231
9.086mid 2 1 - - 55.06 174.90 0.385

high 3 1 - - 76.16 123.75 0.539

D5

low 1 1 1 1 31.06 168.20 0.385
12.782mid 2 1 1 1 56.52 163.36 0.539

high 3 1 1 1 78.39 126.77 0.693

scaling under higher request rates. Other elastic groups con-
taining rest of the services ware underutilized thus should be
considered for consolidation, in a manner similar to consol-
idation of VMs across underlying servers [9]. Deployment
variants D2 and D4 are such examples, and we can observe
cost savings because of this. Isolation of these services should
be made if there are some special security conditions or if they
are shared between many applications.

Based on obtained data-set, system provider for CRS appli-
cation can reason on adequate deployment strategy. Developers
should decide on their own metrics and apply them to MELA
monitoring and SYBL elasticity control based on their set of
SLA objectives and obtain the best variant for their needs.
Despite the cost, there are many deciding factors for choosing a
more distributed environment, like ability to choose better VM
characteristics for certain EG, per-EG VM optimization, en-
forced security policies, special caching strategies or elasticity
rules. For this experiment, if we disregard such factors, based
on evaluating all 15 variants, and using a low-cost priority
SYBL elasticity strategy, D4 proves to be the best solution with
a cost savings of 6.35% in comparison to naı̈ve approach D1.
This is due to fine granularity achieved by specifying elasticity
criteria on per-service group level.

We also noticed an opportunity to further reduce costs by
executing certain Cash Register services in parallel. This way
we could reduce the latency and possibly increase throughput.
Also, a part of some service requests could be conducted
asynchronously when prices of VMs are lower, e.g. by using
Amazon Spot Instances5. We are researching different ways
to extend our framework to enable experiment with such
deployment variants.

V. RELATED WORK

Migration of software to cloud has been thoroughly studied.
A tertiary study in form of Systematic Literature Review
conducted by Jamshidi et al. [10] reveals that elasticity has
been enabled only if original application was engineered for

5Amazon Spot Instances, available at http://aws.amazon.com/ec2/
purchasing-options/spot-instances/

load balancing between the resources. These researches are
mainly studying feasibility, requirements, costs and migration
strategies. Andrikopoulos et al. [11] mention elasticity as a
cross-cutting concern in migration, opening many research
challenges around it. Elasticity has been only enabled on per
tier level and whole application level. Our research enables
experimenting with a fine-grained per service elasticity strate-
gies.

Elasticity in cloud is subject of many recent research. From
proposals of individual elasticity controllers or frameworks like
in [12], [13] to more advanced solutions like PaaS. Garcı́a et
al. [14] proposed a PaaS solution to dynamically provision
cloud resources with regards to predefined set of SLA metrics.
Truong et al. [15] define an integrated PaaS solution for the
whole life-cycle of elastic systems, from design to testing and
monitoring based on multi-dimensional elasticity [1].

Industry offers several PaaS solutions for building elastic
applications. Amazon Elastic Beanstalk [16] is distinguishable
for providing a wide variety of programming languages and de-
ployment servers like Apache6, IIS7 or Nginx8 that are already
familiar to developers of conventional applications. There
are also research proposals [17], [6] that combine elasticity
parameters within deployment descriptors like Topology and
Orchestration Specification for Cloud Applications (TOSCA)
[18], a recently initiated standardization effort from OASIS.

Schulte et al. [2] state the importance of cost reduction in
elasticity strategies. Han et al. [19] also take cost and QoS as
important criteria for elasticity of multi-tier applications. They
provide means to scale such application only at bottleneck
tiers thus reducing amount of over-provisioned resources. They
also differentiate different type of requests and their effects on
elasticity. We apply similar efforts to specifically analyze only
business tier and slice it further to better pinpoint bottlenecks
within it. An extensive survey of different approaches to cost-
aware scaling specialized to multi-tier applications has been
conducted in [20].

6Apache Web Server - http://httpd.apache.org/
7Microsoft IIS - http://www.iis.net/
8Nginx - http://nginx.org/en/



In the area of experimenting with different deployment
options and their effect on performance, Lloyd et al. [21], [22]
examine how different components placed across IaaS service
can affect performance. Gómez Sáez et al. [23] also analyze
how to distribute different application layers with a special
devotion to persistence layer. Our research focuses on slicing
the application component itself to smaller parts, and then
deals with evaluating different distribution and deployment
options with regards to elasticity. Papaioannou et al. [24] took
a different approach by developing an architecture for col-
lecting long-term histories of different distributed application
deployments along their life-cycle. Such way, an insight into
which deployment options performed best is also given, but
only compared within set of previously deployed variants.

Kaviani et al. [25] developed a framework for splitting
Java OLTP applications within hybrid cloud. Their research
is also focused on splitting the application across tier, rather
than between tier, but also expands to database tier as well.
They focus on optimal application division between public and
on-premise deployment based on average execution time and
overall cost. Our framework provides slicing into individual
service groups which are evaluated against different elasticity
criteria set by user within MELA. Since our framework is used
as decision support, we designed it to require minimal change
to original application code.

VI. CONCLUSIONS AND FUTURE WORK

Elasticity is a term widely discussed recently in area of
cloud computing introduced with ’Pay-as-you-go’ concept of
providing cloud resources. For service providers, this concept
enables significant cost reduction. However, there may be a
number of different variants on how to use PAYG elastic
resources in cloud environment.

In this paper we investigate elasticity as a software attribute
in ability to cost effectively adapt using dynamically allocated
resources. We show that the software distribution across logical
nodes in the cloud environment, so called software structure,
may influence software system elasticity. There may be number
of different possible software structures deployable in cloud.
Some software structures are easier (e.g. cost effective) to
scale than others under the specific cloud provider’s PAYG
constraints. Therefore, we propose a framework that should
be used by service providers that want to transform their ver-
tical applications into distributed applications and use PAYG
concept to reduce costs.

We demonstrate on existing cloud application example
that deployment variants significantly influence cost and qual-
ity of cloud service. The maximum cost difference between
deployment variants for our Cash Register application was
32% based on 24 hour usage, and we managed to find a
variant which was 6% cheaper from simple naı̈ve approach.
Careful design can provide benefits for service providers.
With slicing we achieved that request peaks for one service
do not necessarily affect others, as we isolate executions on
different hardware. This also enables further optimization by
configuring each service group based on different criteria like
request types (high CPU, or high I/O etc.). The downside is in
extra I/O cost for communication between services when such
communication is required. Such costs should be addressed by

carefully choosing slicing points. We see further improvements
in this area by analyzing software structure and proposing
adequate slicing points in advance.

This work demonstrated slicing functionality on a smaller
application. Feasibility of this approach on a larger scale ap-
plications from different domain should be examined. To scale
our approach on these applications we will apply modeling on
software structure and software network level.

Future work will also focus on distributing application
by enabling asynchronous and parallel service execution and
on developing optimization algorithms that would be useful
as decision support for application deployment. Furthermore,
these algorithms may be implemented as separated function
offered to service providers that would enable optimizing
their deployment variant for particular cloud at run-time, and
moreover, among different cloud providers as well.
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