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Software Defect Prediction (SDP) 

 Aim: 
◦ Focus testing effort to software units with higher fault-proneness probability  

 

 Motivation: 
◦ High testing costs (80% after release) 

◦ Pareto principle can be applied 
 

 SDP approach: 
◦ Classification based on 

parameters of size and complexity 
 

 Predictive model building: 
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Data Collection for SDP 
 

 Motivation: 
◦ The context of project development may influence SDP performance 

◦ Small number of available datasets => inability to study the context influence 

 

 Problem: 
◦ Lack of systematic data collection approach 

◦ Data collection is time consuming and not trivial 
 

 Potential Source of data: 
1. Industrial (large telecom. software) 
 Rarely available 

2. Open repositories (PROMISE gives NASA datasets) 
 Impossible to validate (missing data collection procedure and source code) 
 Often suffer from: missing values, outliers, duplicated entries, unbalance,... 

3. Open source projects (Eclipse, Mozilla, Apache) 
 Increasingly popular, easily validated, expandable,  

 



Open Source Software Repositories 
 

   Linking 2 repositories : 
◦ Source code management & bug tracking 

◦ Structured and unstructured data 

◦ Problem: there is no formal link 

◦ Consequence: different approach -» data bias 

 
          Important characteristics : 
◦ Bug status: (closed / opened) 

◦ Bug resolution: (fixed / otherwise) 

◦ Bugs severity: 

(blocker - normal / +trivial / +enhancement) 

◦ Repository search order: 

(start with bugs / source code changes) 

◦ Declaration of defect-free units 

(all the unlinked units / unlinked & unchanged) 



Data Collection for SDP 
 
 

  Linking Techniques : 
◦ Simple search 

◦ Regular expression search 

◦ Authorship correspondence 

◦ Time correlation 

◦ Advanced NLP techniques (ReLink) 

 

 

    Issues : 
◦ Granularity level (package / file / class / method) 

◦ Software metrics (product / development & 
process / usage) 

◦ Bug – File cardinality (many – to – many) 

◦ Bug – File duplicated links 

◦ Bug ID varying length 
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Bug – Code (BuCo) Analyzer Tool 
[SoftCOM 2014] 

 Tool developed through : 
◦ Systematic literature review 

(36 papers from [1] + 35 / 136 / 4447) 
 

◦ Exploratory study 

(12 students, observer triangulation, 5 projects, 4 
exercises, 5 data forms, 52 tasks) 

 

◦ Software product metrics tools review 

(iterative review 35 / 19 / 5 / 2 tools) 
 

◦ Iterative development 

(30 students - 13 groups) 
 

◦ Systematic comparison of techniques 

(7 techniques, 5 projects, 37 releases) 

 Tool properties : 
◦ Automatic data collection 

◦ Simple interface 

◦ 6 bug-code linking techniques  

◦ Calculation of 50 product metrics 

◦ Bug counting 

◦ Report generation 

[1] Hall T, Beecham S, Bowes D, Gray D, Counsell S: A systematic literature review on fault prediction 
performance in software engineering, IEEE Trans Softw Eng 38(6),  pp.1276-1304, 2012 



 

Bug – Code (BuCo) Analyzer Tool 
[SoftCOM 2014] 

 Tool offers: 
◦ Bug download from Bugzilla of Eclipse, 

Apache and Mozilla communities 

◦ SCM download from GIT 

◦ Bug-Code linking techniques: 
 
 

 

 

 

 

 

 

 

◦ Automatic calculation of product metrics 

◦ Generate reports 

 



Bug – Code Linking Techniques 
[SQAMIA 2014] 

  Analysis 1 : 
◦ Comparison: Simple search & ReLink 

◦ Aim: define Regex Search 

◦ Project: Apache HTTPD 

◦ Source: ReLink data, GIT repository 
 

 

 

 

 

  Analyses 2 & 3 : 
◦ Comparison: Regex search & ReLink 

◦ Aim: benchmark evaluation 

◦ Projects: Apache HTTPD, OpenNLP 

◦ Source: ReLink & Benchmark data, GIT 

https://bib.irb.hr/datoteka/713952.Techniques_for_Bug-Code_Linking.pdf�


Bug – Code Linking Techniques - Results  
[SQAMIA 2014] 

  Analysis 1 – results : 
◦ Unequal input & linking output: 

 

 

 

 

 

◦ Manual investigation revealed:  

 

 

 

 

 

 

◦ Regular expression:  
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Bug – Code Linking Techniques - Results  
[SQAMIA 2014] 

  Analyses 2 & 3 – results : 
◦ OpenNLP – benchmark dataset (equal input), different linking output: 
 

 

 

 

 

 

◦ Manual investigation – REGEX : 

 
 

 

◦ Manual investigation – ReLink : 
 

https://bib.irb.hr/datoteka/713952.Techniques_for_Bug-Code_Linking.pdf�


Bug – Code Linking Techniques - Conclusion 
[SQAMIA 2014] 

 The generalization of research requires: 
◦ Datasets from various domains 

◦ Systematic procedure with limited bias 

 
 Bug – Code linking 
◦ Proven to be prone to bias 

◦ Complex technique outperformed by regular expression search 

 
 Future research 
◦ Compare the whole data collection process approaches 

◦ Analyze the environment influence to bug-code linking 

https://bib.irb.hr/datoteka/713952.Techniques_for_Bug-Code_Linking.pdf�


Current Research 
 

 Developing a systematic data collection procedure for SDP 
 Comparison of different linking techniques on various environments: 

 

 
 
 

 Comparison of the most  
popular SZZ approach [2]  
to our own 
◦ Interactions between different 

techniques, approaches and datasets 

used in our experiment 

[2] SZZ:  “When do changes induce fixes?”, SIGSOFT Softw Eng Notes, 2005 



Thank you for you attention! 

 
Question? 
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