
Data Collection from Open
Source Software Repositories

 GORAN MAUŠA, TIHANA GALINAC GRBAC

SEIP LABORATORY
FACULTY OF ENGINEERING

UNIVERSITY OF RIJEKA, CROATIA

http://www.seiplab.riteh.uniri.hr/?page_id=8&lang=en�
http://www.seiplab.riteh.uniri.hr/?page_id=8&lang=en�

Software Defect Prediction (SDP)

 Aim:
◦ Focus testing effort to software units with higher fault-proneness probability

 Motivation:
◦ High testing costs (80% after release)

◦ Pareto principle can be applied

 SDP approach:
◦ Classification based on

parameters of size and complexity

 Predictive model building:

Evaluation

Training
Set

Testing
Set

Model
Building

Data
Collection

Data Pre-
processing

Data
Division

Bugs
80%
20%

Code
80%
20%

Data
Collection

Data Collection for SDP

 Motivation:
◦ The context of project development may influence SDP performance

◦ Small number of available datasets => inability to study the context influence

 Problem:
◦ Lack of systematic data collection approach

◦ Data collection is time consuming and not trivial

 Potential Source of data:
1. Industrial (large telecom. software)
 Rarely available

2. Open repositories (PROMISE gives NASA datasets)
 Impossible to validate (missing data collection procedure and source code)
 Often suffer from: missing values, outliers, duplicated entries, unbalance,...

3. Open source projects (Eclipse, Mozilla, Apache)
 Increasingly popular, easily validated, expandable,

Open Source Software Repositories

 Linking 2 repositories :
◦ Source code management & bug tracking

◦ Structured and unstructured data

◦ Problem: there is no formal link

◦ Consequence: different approach -» data bias

 Important characteristics :
◦ Bug status: (closed / opened)

◦ Bug resolution: (fixed / otherwise)

◦ Bugs severity:

(blocker - normal / +trivial / +enhancement)

◦ Repository search order:

(start with bugs / source code changes)

◦ Declaration of defect-free units

(all the unlinked units / unlinked & unchanged)

Data Collection for SDP

 Linking Techniques :
◦ Simple search

◦ Regular expression search

◦ Authorship correspondence

◦ Time correlation

◦ Advanced NLP techniques (ReLink)

 Issues :
◦ Granularity level (package / file / class / method)

◦ Software metrics (product / development &
process / usage)

◦ Bug – File cardinality (many – to – many)

◦ Bug – File duplicated links

◦ Bug ID varying length

Bug tracking
repository

Bug ID

Bug assignee

Bug closed

Release

Bug opened

Comments

Source code
repository

Commit message

Commit author

Commit date

Release tag

Release date

Bug – Code (BuCo) Analyzer Tool
[SoftCOM 2014]

 Tool developed through :
◦ Systematic literature review

(36 papers from [1] + 35 / 136 / 4447)

◦ Exploratory study

(12 students, observer triangulation, 5 projects, 4
exercises, 5 data forms, 52 tasks)

◦ Software product metrics tools review

(iterative review 35 / 19 / 5 / 2 tools)

◦ Iterative development

(30 students - 13 groups)

◦ Systematic comparison of techniques

(7 techniques, 5 projects, 37 releases)

 Tool properties :
◦ Automatic data collection

◦ Simple interface

◦ 6 bug-code linking techniques

◦ Calculation of 50 product metrics

◦ Bug counting

◦ Report generation

[1] Hall T, Beecham S, Bowes D, Gray D, Counsell S: A systematic literature review on fault prediction
performance in software engineering, IEEE Trans Softw Eng 38(6), pp.1276-1304, 2012

Bug – Code (BuCo) Analyzer Tool
[SoftCOM 2014]

 Tool offers:
◦ Bug download from Bugzilla of Eclipse,

Apache and Mozilla communities

◦ SCM download from GIT

◦ Bug-Code linking techniques:

◦ Automatic calculation of product metrics

◦ Generate reports

Bug – Code Linking Techniques
[SQAMIA 2014]

 Analysis 1 :
◦ Comparison: Simple search & ReLink

◦ Aim: define Regex Search

◦ Project: Apache HTTPD

◦ Source: ReLink data, GIT repository

 Analyses 2 & 3 :
◦ Comparison: Regex search & ReLink

◦ Aim: benchmark evaluation

◦ Projects: Apache HTTPD, OpenNLP

◦ Source: ReLink & Benchmark data, GIT

https://bib.irb.hr/datoteka/713952.Techniques_for_Bug-Code_Linking.pdf�

Bug – Code Linking Techniques - Results
[SQAMIA 2014]

 Analysis 1 – results :
◦ Unequal input & linking output:

◦ Manual investigation revealed:

◦ Regular expression:

https://bib.irb.hr/datoteka/713952.Techniques_for_Bug-Code_Linking.pdf�

Bug – Code Linking Techniques - Results
[SQAMIA 2014]

 Analyses 2 & 3 – results :
◦ OpenNLP – benchmark dataset (equal input), different linking output:

◦ Manual investigation – REGEX :

◦ Manual investigation – ReLink :

https://bib.irb.hr/datoteka/713952.Techniques_for_Bug-Code_Linking.pdf�

Bug – Code Linking Techniques - Conclusion
[SQAMIA 2014]

 The generalization of research requires:
◦ Datasets from various domains

◦ Systematic procedure with limited bias

 Bug – Code linking
◦ Proven to be prone to bias

◦ Complex technique outperformed by regular expression search

 Future research
◦ Compare the whole data collection process approaches

◦ Analyze the environment influence to bug-code linking

https://bib.irb.hr/datoteka/713952.Techniques_for_Bug-Code_Linking.pdf�

Current Research

 Developing a systematic data collection procedure for SDP
 Comparison of different linking techniques on various environments:

 Comparison of the most
popular SZZ approach [2]
to our own
◦ Interactions between different

techniques, approaches and datasets

used in our experiment

[2] SZZ: “When do changes induce fixes?”, SIGSOFT Softw Eng Notes, 2005

Thank you for you attention!

Question?

	Data Collection from Open Source Software Repositories
	Software Defect Prediction (SDP)
	Data Collection for SDP�
	Open Source Software Repositories�
	Data Collection for SDP�
	Bug – Code (BuCo) Analyzer Tool�[SoftCOM 2014]
	Bug – Code (BuCo) Analyzer Tool�[SoftCOM 2014]
	Bug – Code Linking Techniques�[SQAMIA 2014]
	Bug – Code Linking Techniques - Results �[SQAMIA 2014]
	Bug – Code Linking Techniques - Results �[SQAMIA 2014]
	Bug – Code Linking Techniques - Conclusion�[SQAMIA 2014]
	Current Research�
	Thank you for you attention!

