
Reliable Software Networks

 1st EIT ICTLabs Future Networking Solutions Outreach Workshop

5th December, 2014, Budapest, Hungary

Tihana Galinac Grbac
Software Engineering and Information

Processing Laboratory, SEIP Lab

http://www.seiplab.riteh.uniri.hr

Department of Computing

• Software engineering in large scale and complex software systems,

• Distributed computing, concurrent systems, network
softwerfication

• Communication systems, middleware platforms and sensor
networks

• Intelligent Computing Systems and Autonomy Oriented Computing

• Human-Computer interaction, usability of mobile technologies

• Artifical inteligence, smart syste and big data

Requirements that change traditional
software engineering practices

• We need adaptable software networks that
enables

– real time and live adaptation to user needs

– end user development

• Our system need to be live.

– it must be possible for (globally distributed) end-users
and software-developers to adapt and evolve the
software systems while the systems are in use.

– Problems of interoperability, reliability, scalability

Our research focus
Live system evolution and adaptation

• Software engineering for software netowrks
– How to develop, verify and maintain reliable software networks

at runtime enable evolution and adaptiation
– How to enable runtime reliable reconfiguration, evolution, scale
– Programming languaues, tools, processes for engineering such

systems
– Cost, measurement models that enables us to efficiently handle

this systems and their evolution, adaptation
– Human, technology interaction in global development and

system use

• Industrial case studies, in global companies, SMEs, involving
massive use; several hundreds of developers, users

Projects
• Analysis and inovative approaches to software development,

management and application of complex software systems
– 2013 – 2016: funded by Croatian Ministry of Science

• Autonomous Control for a Reliable Internet of Services’ funded
by European Cooperation in Science and Technology – COST.
– 2013- 2017: EU Project COST Action 1304 ACROSS

• Behavioural Types for large-scale reliable systems’ funded by
European Cooperation in Science and Technology – COST.
– 2012- 2016: EU Project COST Action 1201 BETTY

• Laboratory and educational support in ICT technologies
– 2010 – 2016: funded by Ericsson Nikola Tesla

• New architectures and protocols in converged
telecommunication networks
– 2007 - 2014: Colaboration with Ericsson funded jointly by Ericsson

and Croatian Ministry of Science

Analysis and inovative approaches to
software development, management and
application of complex software systems

Complex systems

• Number of levels of
abstraction

• Global properties of system
and local properties
describing component
behaviour

• Imposible to derive simple
rules from local properties
towards global properties

Source: Complex software systems : Formalization and Applications -
Work done in EU project GENNETTEC: GENetic NeTworks: Emergence and Complexity

System and system
components

How to secure quality
of complex software systems?

• Software Quality Assurance
a planned and systematic pattern of all actions necessary

to provide adequate confidence that the software item
conforms to its established requirements [IEEEStdGlos]

• Software testing is the process of analyzing a
software item to detect the differences between
existing and required conditions and to evaluate the
features of the software item

• Number of possible test cases is infinite that is
esspecially the case with complex systems

• One result of testing process is software failure

Software Fault and failure

Fault execution leads
to system failure

One system failure may be
result of several
software faults

One software fault may
cause several system
failures Source:

http://vapresspass.com/2013/04/24/failure-is-
not-fatal-by-marcia-zidle/

Fault costs and
complex systems

• Evolving system demands
reusability

• Usually impacts thousands of
end users

• Number of system versions
may coexist at the same time

• Consequences of faults are
impossible to predict

• Problem is not only effect of
one fault, but effect of its
repairment on the system as a
whole

Fault distributions

• 2000: First systematic study on fault distributions
by N.E. Fenton and N. Ohlsson in [ORIG] based
on Basili and Pericone [BASPER]

• 2007: 1st systematic replication by C. Andersson
and P. Runeson in [1REPL],

• 2013: 2nd systematic replication by T. Galinac
Grbac, P. Runeson and D. Huljenić in [2REPL]

Effects of module size and
complexity on fault proneness

Accumulated percentage of number of faults when modules are ordered
with respect to LOC

Analytical fault distributions

• All previous principles ultimately depend on the
underlying probability distribution

• the fulfillment of a certain empirical principle does not
determine the probability distribution uniquely

• The distibutions like double Pareto, Weibull, lognormal,
Pareto, and Yule-Simon with power-law in the tail are
confirmed

2009. Les Hatton. Power-Law Distributions of Component Size in General
Software Systems. IEEE Trans. Software Eng. 35(4): 566-572

2014 Tihana Galinac Grbac, Darko Huljenić. On the Probability Distribution
of Faults in Complex Software Systems, Information and Software
Technology, published online first.

Software structure
• Software structure

represented as
dependency graph
between structural
components show
promisable results
in modeling fault
behaviour

• Some subgraphs
and motifs are
dominant in faulty
software structures

Petrić, Jean; Galinac Grbac, Tihana.
Software structure evolution and relation to
system defectiveness // Proceedings of the
18th International Conference on Evaluation
and Assessment in Software Engineering.
ACM New York, NY, USA : ACM, 2014.

Fault Prediction using
Classification modelling

1) Statistic classificators
– Linear Discriminant Analysis
– Quadratic Discriminant

Analysis
– Logistic Regression
– Naive Bayes
– Bayesian Networks
– Least-Angle Regression
– Relevance Vector Machine

3) Nearest neighbor methods
– k-Nearest Neighbor
– K-Star

5) Neural networks
– Multi-Layer Perceptron
– Radial Basis Function

Network

2) Support vector machine
Support Vector Machine

Lagrangian SVM

Least Squares SVM

Linear Programming

Voted Perceptron

4) Decision trees
C 4.5 Decision Tree

Classification and Regression Tree

Alternating Decision Tree

6) Ensemble methods
Random Forest

Rotation Forest

Logistic Model Tree

Genetic approach

• Problems:

– Unbalanced datasets

– Soft computing approaches did not come to common
solution

– Data are very sensitive on linking bias

Predicting and simulating complex
software systems behaviour

ICT COST Action IC1304

Autonomous Control for a Reliable

Internet of Services (ACROSS)

•Software become central part of the modern network, allow reconfiguration,
flexibiliy

•It should run on any hardware, serve to many users, satisfy their complex
communication needs and deliver proper ICT service, effectively and efficiently

•Modern software has to be flexible on network context, information context,
communication context,

•Modern network should provide reliable and robust ICT services (resistant
against system failures, cyber-attacks, high-load and overload situations, flash
crowds, etc.)

Software in ‘Internet of Service’

ICT COST Action IC1304

Autonomous Control for a Reliable

Internet of Services (ACROSS)

•In service oriented architecture software is provided ‘as a service’

•In that concept ‘of service’ is referring to a technical understanding of

software functions provided as Web service

•IoS combine that services and integrate functionalities that led to complex

service chains

•Usually these service chains are developed by number of providers and

offered to number of users

•Service chain composition is happening at layers above network layer

•Problem is how to secure quality of these service chains

•We need algorithms for autonomous control for a reliable IoS

Key problems with software evolution

ICT COST Action IC1304

Autonomous Control for a Reliable

Internet of Services (ACROSS)

•More and more software systems tend to evolve towards complex software
systems (e.g. IoS)

•Interconnection of peripheral systems over distributed network into system of
systems (IoT)

•Key problems become:

•Can we develop foundations on software behavior?

•How can we measure software behaviour in network?

•Can we predict and simulate software behaviour in network?

•How to manage complex software system?

•Are we able just by observing properties of system parts to predict its overall
behaviour?

IC1201: Behavioural Types for Reliable
Large-Scale Software Systems (BETTY)

• Behavioural type theory encompasses concepts such
as interfaces, communication protocols, contracts, and
choreography.

• As stuctural principle for building reliable software
systems

• Idea:
– to codify the structure of communication to support the

development of reliable communication-oriented
software.

– to encode as types the communication structure of
modern computer systems and statically verify behavioural
properties about them

Example – Session types

• Aim: to develop programming languages,
tools for development of certified software
solutions for global services

•Developed language: e.g. Scribble

Industry collaboration

Complex software system – an
example: Ericsson NGN solution

• Properties of complex software systems:

– Large scale > 3 millions Lines of code

– Open to external inputs

– Distributed

– Concurrent

– High interaction

between parts

– Evolutionary

developed

Example of complex software system is telecommunication software

RIJEKA Competence center for
smart CITIES

Ericsson cooperation with municipalities

Rijeka Smart City
Urban and Traffic Revitalisation of the Rijeka Downtown Area
The pan European corridor - The Rijeka Traffic Corridor as
part of the Pan-European Traffic Corridor Vb
(Rijeka-Zagreb-Budapest)

Summer school - industry
collaboration in SEIP Lab

12th Workshop "Software engineering
Education and Reverse

Engineering",Opatija, Croatia, 2-8
September 2012

E-Health example: UniversAAL

8. skup DaNTe 2013. - Dan Novih
Tehnologija, 6. studeni 2013, Rijeka

IPTV

Real lamps

Kinect

Smart Home

Simulator

Android

device

e-Finance Example: Distributed system
with massive users

• Supply Chain Management (SCM), and Cash
Register

• Producer -> Retailer -> Consumer
• A trading contract is made between Producer

and Retailer (product positioning in stores,
minimum stock and exposition, …)

• Producers dispatch Agents to ensure contracts
are being met

• Agents use our “Manage Trade” software on
their smartphone

• Questions?

