
Overall Architecture

Summary

Developed Component

Optimized and refined bug/file correlation
Armando Vega, Marko Kujundžić, Dea Marin

•Project goals included several search refinement options:

•Limiting the search to a number of months before/after closure of a given bug

•Limiting the search to messages (not) containing certain specified keywords

•Limiting the search to commits made by the bug assignee

•Ignoring certain types of commits, e.g. merge commits

•Ignoring searching for bugs that have already been found

• Libraries/tools required: Git, MySQL, GitPython, PyGTK

Class diagram

Sequence diagram

GUI

Bug finding refinement dialog

• The GUI presents the user with multiple choices of bug finding refinement

• After checking desired options and specifying required input, the user can start the
optimized search process by clicking the provided “Start” button

• This part of the GUI provides the facade to the optimized BugID->Commit->File finding
and correlating process

Conclusion

• Experienced problems
• Regular expressions – The default distribution of the Git binary is missing PCRE
(negative lookaround) support which limited the efficiency of the Git repository history
searching process

• Learned concepts

• Data layer abstraction

• Future work improvements

• Further optimizing the search process for accuracy
• Implementing threads to provide for parallelization of the search process
• Displaying the progress of all longer lasting processes through a standard GUI element,
such as a progress bar
• Implementing and using an ORM solution for easier data object handling and future
extendability

• The ReadRepos uses the GitRepoCloner for Git repository maintenance

• It also uses RepoSearch for searching the repository history for BugIDs and link them
to corresponding files

• GitRepoCloner uses ProgressUpdater to display Git repository clone/pull operation
progress

• RepoSearch uses Database for fetching bug information and storing data about found
matching commits and corresponding files

UNIVERSITY OF RIJEKA
FACULTY OF ENGINEERING
SEIP LABORATORY

• User can initiate full
Git repository
download or update

• It displays progress as
it is working

• User initiates the
analysis of local Git
repositories

• The module
retrieves the list of
bugs from the
database

• It searches the
history of every
repository for given
BugIDs

• It writes data about
corresponding files
into the database

• Architecture components: CSV parser, Project/repository analyzer (using external
tools), Repository maintainer, Repository history analyzer, Database abstraction utilities

	Slide Number 1

