
Predicting and simulating complex
software systems behaviour

 ACROSS MC meeting, October 23, 2014,Larnaca, Cyprus

Tihana Galinac Grbac
Software Engineering and Information Processing Laboratory

Faculty of Engineering

ICT COST Action IC1304

Autonomous Control for a Reliable

Internet of Services (ACROSS)

Department of Computing

• Large scale and complex systems, analysis and modelling

• Distributed computing, concurrent systems

• Intelligent Computing Systems and Autonomy Oriented
Computing

• Artifical inteligence and big data

• Communication systems, middleware platforms and sensor
networks

• Software Engineering and programming languages

• Human-Computer interaction

Modern networks and software

• Software become central part of the modern network

• It should run on any hardware, serve to many users,
satisfy their complex communication needs and deliver
proper ICT service, effectively and efficiently

• Modern software has to be flexible on network context,
information context, communication context,

• Modern network should provide reliable and robust
ICT services (resistant against system failures, cyber-
attacks, high-load and overload situations, flash crowds,
etc.)

Software in ‘Internet of Service’

• In service oriented architecture software is provided ‘as a
service’

• In that concept ‘of service’ is referring to a technical
understanding of software functions provided as Web
service

• IoS combine that services and integrate functionalities
that led to complex service chains

• Usually these service chains are developed by number of
providers and offered to number of users

• Service chain composition is happening at layers above
network layer

• Problem is how to secure quality of these service chains
• We need algorithms for autonomous control for a reliable

IoS

Key problems with software evolution

• More and more software systems tend to evolve towards
complex software systems (e.g. IoS)

• Interconnection of peripheral systems over distributed
network into system of systems (IoT)

• Key problems become:
– Can we develop foundations on software behavior?

– How can we measure software behaviour in network?

– Can we predict and simulate software behaviour in network?

– How to manage complex software system?

– Are we able just by observing properties of system parts to
predict and model its overall behaviour?

Focus of our research

Complex systems

• Number of levels of
abstraction

• Global properties of system
and local properties
describing component
behaviour

• Imposible to derive simple
rules from local properties
towards global properties

Source: Complex software systems : Formalization and Applications -
Work done in EU project GENNETTEC: GENetic NeTworks: Emergence and Complexity

System and system
components

How to secure quality of complex
software systems?

• Software Quality Assurance
a planned and systematic pattern of all actions necessary

to provide adequate confidence that the software item
conforms to its established requirements [IEEEStdGlos]

• Software testing is the process of analyzing a
software item to detect the differences between
existing and required conditions and to evaluate the
features of the software item

• Number of possible test cases is infinite that is
esspecially the case with complex systems

• One result of testing process is software failure

Software Fault and failure

Fault execution leads
to system failure

One system failure may be
result of several
software faults

One software fault may
cause several system
failures Source:

http://vapresspass.com/2013/04/24/failure-is-
not-fatal-by-marcia-zidle/

Fault costs and complex systems

• Evolving system demands
reusability

• Usually impacts thousands of
end users

• Number of system versions
may coexist at the same time

• Consequences of faults are
impossible to predict

• Problem is not only effect of
one fault, but effect of its
repairment on the system as a
whole

Fault distributions

Over software structure

Empirical studies on fault distributions

• N. E. Fenton and N. Ohlsson, "Quantitative Analysis of
Faults and Failures in a Complex Software System," IEEE
Trans. Softw. Eng., vol. 26, no. 8 , pp. 797-814, Aug. 2000.

• C. Andersson and P. Runeson, "A Replicated Quantitative
Analysis of Fault Distributions in Complex Software
Systems," IEEE Trans. Softw. Eng., vol. 33, no. 5, pp. 273-
286, May 2007.

• T. Galinac Grbac, P. Runeson and D. Huljenic, "A Second
Replicated Quantitative Analysis of Fault Distributions in
Complex Software Systems," IEEE Trans. Softw. Eng., vol.
39, no. 4, pp. 462-476, Apr. 2013.

Pareto principle: 80 – 20 rule

Vilfredo Federico Damaso Pareto

• 1906: 80% of the land in Italy was
owned by 20% of the population

• Income and wealth among the
population follows a Pareto
distribution, a power law
probability distribution

Source: http://en.wikipedia.org/wiki/Vilfredo_Pareto

Alberg diagrams: Pareto principle of fault
distributions

Alberg diagram showing the percentage of: (a) modules versus the percentage of pre-
release faults, (b) modules versus the percentage of postrelease faults, and (c) system size
versus the percentage of postrelease faults

Alberg diagrams: persistance of faults

Accumulated percentage of the number of faults in the system test
when modules are ordered with respect to the number of faults in the
system test and the function test.

Effects of module size and complexity on fault proneness

Accumulated percentage of number of faults when modules are ordered
with respect to LOC

Analytical fault distributions

• All previous principles ultimately depend on the
underlying probability distribution

• the fulfillment of a certain empirical principle does not
determine the probability distribution uniquely

• The distibutions like double Pareto, Weibull, lognormal,
Pareto, and Yule-Simon with power-law in the tail are
confirmed

Les Hatton. Power-Law Distributions of Component Size in General
Software Systems. IEEE Trans. Software Eng. 35(4): 566-572

Tihana Galinac Grbac, Darko Huljenić. On the Probability Distribution
of Faults in Complex Software Systems, Information and Software
Technology, published online first.

Software structure
• Software structure

represented as
dependency graph
between structural
components show
promisable results
in modeling fault
behaviour

• Some subgraphs
and motifs are
dominant in faulty
software structures

Petrić, Jean; Galinac Grbac, Tihana.
Software structure evolution and relation to
system defectiveness // Proceedings of the
18th International Conference on Evaluation
and Assessment in Software Engineering.
ACM New York, NY, USA : ACM, 2014.

IC1201: Behavioural Types for Reliable
Large-Scale Software Systems (BETTY)

• Behavioural type theory encompasses concepts such
as interfaces, communication protocols, contracts, and
choreography.

• As stuctural principle for building reliable software
systems

• Idea:
– to codify the structure of communication to support the

development of reliable communication-oriented
software.

– to encode as types the communication structure of
modern computer systems and statically verify behavioural
properties about them

Example – Session types

• Aim: to develop programming languages,
tools for development of certified software
solutions for global services

•Developed language: e.g. Scribble

Fault Prediction using Classification modelling

1) Statistic classificators
– Linear Discriminant Analysis
– Quadratic Discriminant

Analysis
– Logistic Regression
– Naive Bayes
– Bayesian Networks
– Least-Angle Regression
– Relevance Vector Machine

3) Nearest neighbor methods
– k-Nearest Neighbor
– K-Star

5) Neural networks
– Multi-Layer Perceptron
– Radial Basis Function

Network

2) Support vector machine
Support Vector Machine

Lagrangian SVM

Least Squares SVM

Linear Programming

Voted Perceptron

4) Decision trees
C 4.5 Decision Tree

Classification and Regression Tree

Alternating Decision Tree

6) Ensemble methods
Random Forest

Rotation Forest

Logistic Model Tree

Genetic approach

• Problems:

– Unbalanced datasets

– Soft computing approaches did not come to common
solution

– Data are very sensitive on linking bias

Relation to ACROSS

• Reliability and availability service chains will very
much depend on their structure

• knowing the appropriate statistical fault
distribution would enable more systematic
approach for automated guidance for creation of
reliable software chains

• Interesting is to model the underlying processes
that generate distributions and how they
influence the statistical fault distributions

• Context awarness based on system structure and
measurements on software abstract levels

Future work

• Replications and knowledge systematization:
– The experiments are performed on the data from software

system of large scale telecommunication software and number
of open source projects and previous work is confirmed

• Customizable data presentation tool for observing
software structures and fault distributions over the
structures

• Linking repositories problem – within software lifecycle
number of repositories exists aiming to collect information
for different information needs

• Simulations aiming to find underlying distributions for
generative models and finding simulation model of
software fault-behaviour in network over time

• Questions?

