
On the Probability Distribution of Faults in Complex

Software Systems

Tihana Galinac Grbac∗

Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka, Croatia

Darko Huljenić

Ericsson Nikola Tesla, Krapinska 45, HR-10000 Zagreb, Croatia

Abstract

Context. There are several empirical principles related to the distribution
of faults in a software system (e.g. the Pareto principle) widely applied in
practice and thoroughly studied in the software engineering research pro-
viding evidence in their favor. However, the knowledge of the underlying
probability distribution of faults, that would enable a systematic approach
and refinement of these principles, is still quite limited.
Objective. In this paper we study the probability distribution of faults de-
tected during verification in four consecutive releases of a large-scale complex
software system for the telecommunication exchanges. This is the first such
study analyzing closed software system, replicating two previous studies for
open source software.
Method. We take into consideration the Weibull, lognormal, double Pareto,
Pareto, and Yule-Simon probability distributions, and investigate how well
these distributions fit our empirical fault data using the non-linear regres-
sion.
Results. The results indicate that the double Pareto distribution is the
most likely choice for the underlying probability distribution. This is not
consistent with the previous studies on open source software.
Conclusion. The study shows that understanding the probability distribu-

∗Corresponding author
Email addresses: tihana.galinac@riteh.hr (Tihana Galinac Grbac),

darko.huljenic@ericsson.com (Darko Huljenić)

Preprint submitted to Information and Software Technology June 18, 2014



tion of faults in complex software systems is more complicated than previ-
ously thought. Comparison with previous studies shows that the fault dis-
tribution strongly depends on the environment, and only further replications
would make it possible to build up a general theory for a given context.

Keywords: software fault distribution, probability distribution, non-linear
regression, complex software system, empirical research

1. Introduction

The knowledge of fault distributions in large–scale complex software sys-
tems is very important for planning the quality assurance activities. There
are several empirical principles, widely applied in software development prac-
tice, related to the distribution of faults. For example, the Pareto principle
[1, 2], also known as the 20-80 rule, is one of the most popular among them.
It states that a majority of faults (80%) in a software system is contained in
a minority of software modules (20%). There is a lot of empirical evidence in
favor of this principle [3, 4, 5, 6, 7, 2, 8, 9, 10]. Another example is the prin-
ciple that the minority of modules containing the majority of faults confines
not too large portion of the system size. Empirical evidence for this principle
is obtained in [8, 9, 10].

All such principles ultimately depend on the underlying probability dis-
tribution of faults in a software system. However, the converse is not true,
that is, the fulfillment of a certain principle does not determine the prob-
ability distribution uniquely. For example, there are several distributions,
besides the Pareto distribution, that would result in the Pareto principle. In
other words, the empirical evidence in favor of some principle does not imply
information on the probability distribution, and, indeed, our knowledge on
the probability distribution of faults in software systems is still quite limited.

Recently a lot of attention is put to the more general problem of deter-
mining probability distributions of various metrics in software engineering
(see e.g. [11, 12, 13]). The final goal of all these works, as well as this paper,
is to refine the empirical principles used in software engineering practice,
and possibly even use the precise knowledge of probability distributions to
predict the behavior of future releases of a complex software system.

The knowledge of the most appropriate probability distribution fitting
the empirical fault data in complex software systems would enable more
systematic approach and refinement of the Pareto principle and other related

2



principles used in the software development practice. This line of thought is
pursued in works of Zhang [14] and Concas et al. [15]. Both papers study the
fault data for the open source Eclipse system using the non-linear regression
for fitting.

Zhang [14] compares how the Pareto and Weibull distributions fit the
data, and conclude that the Weibull distribution is significantly better. As
explained above, this is not contradictory to the Pareto principle itself, since
the Pareto principle does not imply the underlying probability distribution.

Concas et al. [15] consider the Weibull, lognormal, double Pareto, and
Yule-Simon distributions. The results reveal that, for the Eclipse system, the
Yule-Simon distribution provides better fit than the others. The Weibull, log-
normal, and double Pareto distributions are quite close, although the Weibull
distribution is the worst in all five considered system releases. The authors ar-
gue further in favor of the Yule-Simon, but also lognormal and double Pareto
distributions, since they all have a generative model, unlike the Weibull dis-
tribution.

Motivated by these two papers on the Eclipse system, and the impor-
tance of finding the most appropriate distribution, we study the probability
distribution of faults in a very different context, that is, in four consecutive
releases of the large-scale complex software system for telecommunication
exchanges. We consider all distributions appearing in [14] and [15]. These
are the Pareto, Weibull, lognormal, double Pareto, and Yule-Simon distri-
butions. As in [14] and [15], the fitting method is the non-linear regression
for the fault data in the form of the complementary cumulative distribution
function (CCDF) of the random variable counting the number of faults in a
software module.

In reporting the results of non-linear regression we follow closely the expo-
sition of [15] to simplify the comparison. Additionally to the goodness-of-fit
measures, we report the distribution parameters obtained for the best fits.
These are not reported in [15], and we can compare only to the Pareto and
Weibull distribution fits of [14]. We provide such detailed results, so that the
replications of this study for other software systems could be easily compared.

It turns out that the results are different from those of [14] and [15],
which can be explained by a very different context. In our study the double
Pareto distribution is the best fit to the fault count data. The lognormal
distribution is the second best, followed closely by the Yule-Simon distribu-
tion, which is even slightly better in one of the projects. Only then comes
the Weibull distribution, while the Pareto distribution is worse than others.

3



However, the Pareto distribution performs much better than reported by [14].
We hope that this study will become a source of several replications in both
similar and different contexts, so that the most appropriate probability dis-
tributions of faults could be identified in different types of software systems
and development environments.

The paper is organized as follows. In Section 2 the context of the study
and the fault data are described in detail. Section 3 recalls the considered
probability distributions. The results of the non-linear regression fit are
reported in Section 4. Section 7 concludes the paper.

2. Context of the Study

We describe in this section the context of this study including the software
system, the development organization, the software development process, and
the data collection performed for the purpose of this study.

2.1. Software System

The study is undertaken on a sequence of four development projects,
denoted P1, P2, P3, P4, developing consecutive releases of the same software
product. The considered projects are the same as in the study [10], except
that the last two releases, denoted by Rel n+3 and Rel n+4, are combined
into project P4. The reason is that the size of datasets from these two releases
is too small for a reliable fitting, and they are indeed two subprojects of the
same development project.

The software product is the software system for the Mobile Switching Cen-
ter (MSC), that is, a functional node in the Third Generation (3G) telecom-
munication network. The MSC node is built on Ericsson’s AXE exchange
that has evolved for more than 30 years and is in operation in hundreds of
exchanges all over the world.

The system is coded in Ericsson’s in-house Programming Language for
EXchanges (PLEX). It is a large-scale software system with several millions
lines of code (LOC). The software system architecture is modular, involving
more than 1000 software modules.

2.2. Organization

The development organization is a globally distributed Ericsson’s unit
with long experience in software development for AXE exchange. The num-
ber of involved development units varied during the projects. A typical

4



Table 1: Project characteristics

Proj.
Size Modification No. of No. of No. of No. of Total no.

[kLOC] size [kLOC] modules FT faults ST faults SI faults of faults

P1 2787 736 485 1630 3500 404 5534
P2 1793 258 241 835 1693 1051 3579
P3 2880 273 295 942 1603 1529 4074
P4 1637 265 158 1673 3093 1052 5818

software development project involves more then 300 developers world-wide
and lasts for one to two years.

2.3. Development and Verification Process

The software development process has evolved over the years from the
traditional waterfall model by introducing the incremental and iterative de-
livery and feature development. In this study we concentrate on the faults
detected during the testing part of verification process, which consists of the
function test (FT), system test (ST) and system integration test (SI). The
essential difference is in the system coverage under the test. The function
test covers functional environment, that is, only software modules responsi-
ble for the functional execution and is very often executed in the simulated
system environment. The system test covers essential system environment
for function integration, often executed on the test plants, and the system
integration test that covers all deployment environment executed on the test
plants.

The fault handling process consists of collection of trouble reports (TR)
issued whenever the failure occurs. It is very precise and contains all the
information required for fault analysis and fault decision process. The same
process is used during the software verification and during the system in
operation. The fault handling process is a standard Ericsson’s process. TRs
are stored in a database, which can be easily searched.

For every failure that occurs during verification, one or more TRs are
issued. This is because there could be one or more faults in the code re-
sponsible for the same failure. Hence, a TR is issued for each location in
the code (software module) that could contain the fault causing the failure.
These TRs are answered, and an answer code is attached to the TR. The
answer code indicates whether the fault really exists and should be corrected,
and whether the fault is already corrected as a consequence of another TR.
Duplication of TRs could happen due to parallel testing activities and since

5



Table 2: Module size distribution
LOC P1 P2 P3 P4

≤ 5000 307 116 120 45
5001− 10000 114 74 90 42
10001− 20000 42 37 53 55
20000− 30000 11 6 10 11
30000− 40000 6 3 9 3

> 40001 5 5 13 2

Total 485 251 295 158

the same fault could be a reason for several failures. More precisely, for every
fault in the code there is exactly one TR with the answer code saying the
fault should be corrected. Only these TRs are included into our analysis and
all duplicates were excluded.

2.4. Data Collection

As a result of the standard TR handling process all relevant data regard-
ing TR collection, analyzing and answering are stored in the database.

For the purpose of this analysis, we searched in the database for all TRs
reported during function test, system test and system integration test on
software modules modified or impacted in the projects. Based on the TR
answer code, we included in our analysis only TRs that need correction,
and eliminated the duplicates. This was possible, since the TR answer code
provides all this information and is easily accessible in the database. Observe
that, besides all modules that are modified in a project, we also consider here
those modules that are not modified but contain faults detected in a project.
This is in accordance with the original studies [14] and [15]. However, in
[10], where the same projects are considered, only modified modules with at
least one fault are taken into account. This explains differences in project
characteristics between this study and [10].

The outcome of the data collection in a project are the total and modified
size and the number of faults for every software module that was modified or
impacted in that project. The number of software modules, the total size, the
size of modification, the number of faults in every verification phase and the
total number of faults are given in Table 1 for each project. The module–size
distribution is given in Table 2.

6



3. Probability Distributions

Let X be the random variable counting the number of faults in a soft-
ware module. The empirical data from each of the four considered projects
contains a sample for X. The goal is to study the probability distribution of
X based on these four empirical samples.

We fit the empirical samples for X, as in [13, 14, 15], to the complemen-
tary cumulative distribution function (CCDF) of a probability distribution,
also known as the survivor function and the reliability function. It is defined
at the value x as P (X ≥ x), that is, the probability that the underlying
random variable X takes the value greater than or equal to x. As explained
in [13, 15], the CCDF is the key diagram in practice, equivalent to the Alberg
diagram, which is the most common diagram used in software engineering.
They give a precise relationship between the CCDF and Alberg diagram. For
a detailed discussion of these issues see [16].

The probability density function (PDF) of a probability distribution will
be denoted by p(x). It is defined as the derivative of the cumulative distribu-
tion function (CDF), which amounts to the negative derivative of the CCDF.
That is,

p(x) = − d

dx
P (X ≥ x). (1)

We use PDF to observe the power-law in the tail of considered probability
distribution. The exponent α of the power-law tail is defined by the condition

p(x) ∝ x−α (2)

for sufficiently large x. The power-law is best observed in the log-log scale,
since the above condition becomes a straight line

ln p(x) = lnC − α lnx, (3)

where C > 0 is the constant of proportionality.
In what follows we recall the formulas for PDF and CCDF of the prob-

ability distributions considered in this paper. This material is well-known,
but we include it for completeness and to fix the notation for distribution
parameters. The notation for parameters of some probability distributions
below are adjusted compared to [15], so that the parameter α corresponds
to the power-law exponent in the tail.

7



3.1. Weibull Distribution

The Weibull distribution is a continuous probability distribution sup-
ported in x > 0. Its CCDF is given as

P (X ≥ x) = exp

(
−
(
x

γ

)β
)
, x > 0, (4)

where β > 0 and γ > 0. Then, the PDF is

p(x) =
β

γ
·
(
x

γ

)β−1

· exp

(
−
(
x

γ

)β
)
, x > 0. (5)

In log-log scale the PDF becomes

ln p(x) = ln(β/γβ)− (1− β) ln x− 1

γβ
eβ lnx, (6)

which contains a power-law with exponent α = 1 − β, but having an extra
exponential term in ln x which dominates the behavior.

3.2. Lognormal Distribution

The lognormal distribution is a continuous probability distribution sup-
ported in x > 0. It is characterized by the fact that its natural logarithm is
the normal distribution. The mean µ and variance σ2 of the normal distri-
bution so obtained are the parameters of the lognormal distribution. Thus,
its PDF function is given as

p(x) =
1

x
√
2πσ2

· exp
(
−(lnx− µ)2

2σ2

)
, x > 0, (7)

where µ is real and σ > 0. For the CCDF, we have to integrate

P (X ≥ x) =
1√
2πσ2

·
∫ +∞

x

exp

(
−(ln t− µ)2

2σ2

)
dt

t
. (8)

Making the substitution for ln t, and scaling to the standard normal distri-
bution (with µ = 0 and σ = 1) yields the CCDF in the form

P (X ≥ x) = 1− Φ

(
lnx− µ

σ

)
, x > 0, (9)

8



where Φ is the CDF of the standard normal distribution. In the log-log scale
the lognormal PDF becomes

ln p(x) = − µ2

2σ2
− ln

√
2πσ2 −

(
1− µ

σ2

)
lnx− 1

2σ2
(lnx)2 . (10)

This is close to a power-law distribution, having an extra quadratic term
in ln x. The coefficient of the linear term is the power-law exponent α =
1− µ/σ2.

3.3. Pareto Distribution

The Pareto distribution was originally introduced in [17] to describe the
distribution of income and wealth in a society. It is a continuous probability
distribution which is mainly used to fit the tails of other distributions. In
particular, its support is in x ≥ xm, where xm is certain positive value of the
random variable, usually the beginning of the tail. The Pareto CCDF for
x > 0 is given as

P (X ≥ x) =

{
1, for 0 < x < xm,
(xm/x)

β, for x ≥ xm,
(11)

and the PDF

p(x) =

{
0, for 0 < x < xm,
βxβ

m · x−(1+β), for x ≥ xm,
(12)

where β > 0. Clearly, this is a power-law distribution with the exponent
α = 1 + β.

We would like to mention here a possible pitfall when fitting the Pareto
distribution. Using incorrectly the function (xm/x)

β for all x > 0, instead of
the CCDF given by (11), would lead to significantly lower goodness-of-fit (see
Section 4). The problem is that this function is not a CCDF of a probability
distribution, since it grows to infinity as x approaches zero. In particular,
the error of estimate would increase significantly for observations near zero.

Another possibility is to restrict the fitting of the Pareto distribution
only to tail, and discard the body of the distribution. In this approach, the
parameter xm is estimated as the beginning of the tail, and then the fitting
is performed only in the region x ≥ xm. For more details see [18]. This
approach is taken in [13], but not in [15], which we replicate here. Fitting
only the tail certainly increases the goodness-of-fit, as it considers only the

9



region x ≥ xm, but loses all information about the body of the distribution,
i.e., x < xm. However, as explained in [13], it is sufficient to make estimates of
some distribution parameters in future releases, such as the maximal number
of faults in a software unit.

We are making a close replication of [15], in which the approach is to fit
the faults data to the CCDF given by (11) in the full range of a distribution,
i.e. not fitting only the tail. Hence, our approach is the same as in [15].

3.4. Double Pareto Distribution

The idea behind the double Pareto class of probability distributions is to
find a distribution that fits well the body of empirical distribution and at
the same time the power-law tail. As in [15], we use the form of the double
Pareto distribution developed in [19]. Note that the definition of a power-tail
exponent in [19] is a bit different than what we use in this paper. We adjusted
the notation for the double Pareto distribution parameters accordingly.

This double Pareto distribution is a continuous probability distribution
supported in 0 < x ≤ xM , where xM is the maximal possible value of the
underlying random variable. The double Pareto CCDF for x > 0 is given as

P (X ≥ x) =

{
1−

[
1+(xM/t)−β

1+(x/t)−β

]γ/β
, for 0 < x ≤ xM ,

0, for x > xM ,
(13)

and the PDF as

p(x) =

 γ
t
· [1+(xM/t)−β]

γ/β

[1+(x/t)−β]
1+γ/β ·

(
x
t

)−(1+β)
, for 0 < x ≤ xM ,

0, for x > xM ,
(14)

where 0 < t < xM , β > 0 and γ > 0.
The parameter t determines the crossover point x = t, at which the

distribution changes its behavior from the power-law in the body to the
power-law in the tail.

The power-law in the tail is governed by the term (x/t)−(1+β). Indeed, for
x sufficiently large (not exceeding xM) with respect to t, we have x/t large,
so that the fraction appearing in (14) is approximately equal to 1. Thus, the
power-law exponent in the tail is α = 1 + β.

For the power-law in the body of the distribution, we consider x suf-
ficiently small with respect to t, so that x/t is close to zero. For such x

10



the asymptotic behavior of the fraction in equation (14) is proportional to
(x/t)β+γ. Multiplying by the last term (x/t)−(1+β) shows that the body fol-
lows the power-law with exponent γ − 1.

3.5. Yule-Simon Distribution

The Yule-Simon distribution is the outcome of the so-called preferential
attachment model, developed to explain the power-law in tails of certain
empirical distributions. Originally it was developed in [23] to describe dis-
tributions of species and genera in the theory of evolution, and later applied
in [21] to the distribution of words in books. It is a discrete probability
distribution supported in the non-negative integers.

The Yule-Simon PDF is given as

pk = p0 ·
B(c+ k, α)

B(c, α)
, k = 0, 1, 2, . . . , (15)

where c > 0, α > 0, and 0 < p0 ≤ 1 is the probability that the random
variable takes the value zero. Here B(a, b) denotes the Beta Function, which
can be expressed in terms of the Gamma Function as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (16)

We only need the values of the Beta Function for a, b > 0, and in that range it
is well-defined, that is, there are no poles, and also no zeros. The parameter
p0 is in fact determined by c and α by the condition that the total probability∑∞

j=0 pj should be 1. More precisely,

p0 =

(
∞∑
j=0

B(c+ j, α)

B(c, α)

)−1

, (17)

so that the Yule-Simon PDF is

pk =
B(c+ k, α)

B(c, α)
·

(
∞∑
j=0

B(c+ j, α)

B(c, α)

)−1

, k = 0, 1, 2, . . . (18)

The Yule-Simon CCDF is then given as

P (X ≥ x) =
∑
k≥x

pk

11



= p0
∑
k≥x

B(c+ k, α)

B(c, α)
(19)

=

(
∞∑
j=0

B(c+ j, α)

B(c, α)

)−1

·
∑
k≥x

B(c+ k, α)

B(c, α)
.

It can be shown that the parameter α is the power-law exponent in the
tail of the Yule-Simon distribution. Indeed, taking the logarithm of equation
(15), and writing the Beta Function as in (16), we obtain

ln pk = C + lnΓ(c+ k)− ln Γ(c+ k + α), (20)

where C = ln p0 + lnΓ(α)− lnB(c, α) is a constant. Applying Stirling’s ap-
proximation for the logarithm of the Gamma Function gives, for k sufficiently
large, that

ln Γ(c+ k)− ln Γ(c+ k + α) ≈

≈ α− ln

(
1 +

α

c+ k

)c+k−1/2

− α ln(c+ k + α)

≈ −α ln k. (21)

We used the fact that the second term in the first line tends to −α as k → ∞,
while the asymptotic of the last term as k → ∞ coincides with that of−α ln k.
Thus, we obtained

ln pk ≈ C − α ln k, (22)

for large k, showing that α is the power-law exponent in the tail.

4. Non-linear Regression Fit

For the non-linear regression fit [22] of the empirical CCDF for the random
variable X counting the number of faults in software units, we used the
Matlab curve fitting tool, which is based on the least squares method for
fitting. Except for the Yule-Simon distribution, we discard the software units
with no faults (as in [15]), since they do not fit zero values. As already
explained in Sect. 3.3, we fit the Pareto distribution, following [15], to the
full data sample, and not only the tail. The obtained CCDFs for double
Pareto, lognormal, Weibull and Pareto distributions are presented in log-log

12



Table 3: Distribution parameters and goodness-of-fit for non-linear regression
Project Distribution Parameters R2 Se

P1

Double Pareto

β = 0.7941

0.99901 0.00654
γ = 92.5331
xM = 142.4923
t = 0.0126

Weibull
γ = 12.6963

0.98019 0.02926
β = 0.7216

Lognormal
µ = 2.0034

0.99554 0.01389
σ = 1.3623

Pareto
xm = 2.4695

0.97077 0.03553
β = 0.7436

Yule-Simon (p0 from data)
c = 2.0997

0.98179 0.02376
α = 1.8212

Yule-Simon (p0 not from data)
c = 3.5498

0.99130 0.01643
α = 1.9951

P2

Double Pareto

β = 0.7694

0.99759 0.01147
γ = 27.3994
xM = 124.8392
t = 0.0649

Weibull
γ = 15.4349

0.98569 0.02797
β = 0.7811

Lognormal
µ = 2.2221

0.99610 0.01460
σ = 1.3033

Pareto
xm = 2.8309

0.96176 0.04572
β = 0.7036

Yule-Simon (p0 from data)
c = 4.1133

0.98159 0.02883
α = 1.9281

Yule-Simon (p0 not from data)
c = 7.8705

0.99285 0.01796
α = 2.2364

P3

Double Pareto

β = 1.5429

0.99515 0.01789
γ = 1.5661
xM = 8377.4032
t = 8.5373

Weibull
γ = 13.2804

0.98436 0.03214
β = 0.9589

Lognormal
µ = 2.1531

0.99444 0.01916
σ = 1.0944

Pareto
xm = 2.8945

0.95798 0.05268
β = 0.7898

Yule-Simon (p0 from data)
c = 3.5853

0.96888 0.03945
α = 2.0078

Yule-Simon (p0 not from data)
c = 9.6442

0.98967 0.02273
α = 2.6396

P4

Double Pareto

β = 0.9672

0.99703 0.01347
γ = 2.7293
xM = 2942.2168
t = 3.3279

Weibull
γ = 22.2033

0.97342 0.04029
β = 0.7237

Lognormal
µ = 2.5494

0.99295 0.02075
σ = 1.4433

Pareto
xm = 3.6015

0.97523 0.03810
β = 0.6280

Yule-Simon (p0 from data)
c = 33.1215

0.98353 0.03100
α = 2.9207

Yule-Simon (p0 not from data)
c = 12.5872

0.99709 0.01302
α = 2.1426

13



scale in Fig. 1 for project P1, Fig. 2 for project P2, Fig. 3 for project P3,
Fig. 4 for project P4, and the parameter values are listed in Table 3.

Fitting the Yule-Simon distribution is done in two ways. The first way
is to estimate p0 a priori as the relative frequency of software units with no
faults in the sample. This approach was taken in [15]. The second way is to
express p0 in terms of parameters c and α, as in equation (17), and then fit
to the CCDF given by formula (19). The obtained CCDFs for Yule-Simon
distributions are presented in log-log scale in Fig. 5 for project P1, Fig. 6
for project P2, Fig. 7 for project P3, Fig. 8 for project P4, and the values of
distribution parameters in Table 3.

As a measure for goodness-of-fit we compute, as in [14], the coefficient of
determination R2 adjusted for the degrees of freedom of the fitting model,
and the standard error of estimate Se. Their values are also given in Table
3.

More precisely, let

SSerr =
n∑

i=1

(yi − ŷi)
2 (23)

be the sum square error, where yi and ŷi are the actual and fitted values of ith
observation, and n is the number of observations. The least square method
used in non-linear regression actually determines the unknown parameters
by minimizing this value. Let

SStot =
n∑

i=1

(yi − ȳ)2 (24)

be the total sum of squares, where ȳ is the mean of the observed data.
The adjusted coefficient of determination R2 is defined as

R2 = 1− (n− 1)SSerr

(n−m− 1)SStot

, (25)

where m is the number of parameters in the fitting function.
The standard error of estimate Se is defined as the square root of the sum

square error divided by the degrees of freedom. That is,

Se =

√
SSerr

n−m
. (26)

14



10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 x

 P
(X

≥ 
x

)

 

 

P1 data
Double Pareto
Weibull
Lognormal
Pareto

Figure 1: Non-linear regression fits to the double Pareto, Weibull, Lognormal and Pareto
CCDF for random variable X counting testing faults in project P1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 x

 P
(X

≥ 
x

)

 

 

P2 data
Double Pareto
Weibull
Lognormal
Pareto

Figure 2: Non-linear regression fits to the double Pareto, Weibull, Lognormal and Pareto
CCDF for random variable X counting testing faults in project P2

15



10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 x

 P
(X

≥ 
x

)

 

 

P3 data
Double Pareto
Weibull
Lognormal
Pareto

Figure 3: Non-linear regression fits to the double Pareto, Weibull, Lognormal and Pareto
CCDF for random variable X counting testing faults in project P3

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 x

 P
(X

≥ 
x

)

 

 

P4 data
Double Pareto
Weibull
Lognormal
Pareto

Figure 4: Non-linear regression fits to the double Pareto, Weibull, Lognormal and Pareto
CCDF for random variable X counting testing faults in project P4

16



10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 x

 P
(X

≥ 
x

)

 

 

P1 data
Yule-Simon (p0 from data)
Yule-Simon (p0 not from data)

Figure 5: Non-linear regression fits to the Yule-Simon CCDF with and without a priori
estimate for p0 from data for random variable X counting testing faults in project P1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 x

 P
(X

≥ 
x

)

 

 

P2 data
Yule-Simon (p0 from data)
Yule-Simon (p0 not from data)

Figure 6: Non-linear regression fits to the Yule-Simon CCDF with and without a priori
estimate for p0 from data for random variable X counting testing faults in project P2

17



10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 x

 P
(X

≥ 
x

)

 

 

P3 data
Yule-Simon (p0 from data)
Yule-Simon (p0 not from data)

Figure 7: Non-linear regression fits to the Yule-Simon CCDF with and without a priori
estimate for p0 from data for random variable X counting testing faults in project P3

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

 x

 P
(X

≥ 
x

)

 

 

P4 data
Yule-Simon (p0 from data)
Yule-Simon (p0 not from data)

Figure 8: Non-linear regression fits to the Yule-Simon CCDF with and without a priori
estimate for p0 from data for random variable X counting testing faults in project P4

18



Comparing the goodness-of-fit reported in Table 3 shows first of all that
the R2 values for all distributions are very close. The difference of the coeffi-
cient R2 between the best and the worst fit for each project does not exceed
0.04. However, there is a certain tendency that can be observed in all the
projects.

The double Pareto distribution has the highest R2 in projects P1, P2 and
P3, while in P4 the R2 for the Yule-Simon distribution (with p0 not estimated
from the data) is better, but only for negligible 0.00005. Hence, we conclude
that the most appropriate probability distribution to fit our empirical data
is the double Pareto distribution.

Despite the Yule-Simon outperforming slightly the lognormal distribution
in P4 (for 0.004), the lognormal distribution has consistently higher values
of R2 in P1, P2 and P3. Hence, it is more likely that the lognormal is the
second best choice for the fit, followed by the Yule-Simon distribution (with
p0 not estimated from the data).

Only then comes the Weibull distribution, with higher values of R2 than
for the Pareto distribution in P1, P2 and P3, although slightly outperformed
by the Pareto distribution in P4 (for less than 0.002).

These results are not consistent with those of [15], which point to the
Yule-Simon distribution as significantly better fit than others. The reason for
this inconsistency is certainly a very different context of this study compared
to the previous work. It is also interesting to observe that the Weibull and
Pareto distributions are much closer than obtained in [14].

5. Discussion and future work

The detailed discussion in Section 4 of the goodness-of-fit using the non-
linear regression for the five considered probability distributions is summa-
rized in Table 4. In the same table we also summarize the results of [15] and
[14]. This is a bit simplified view of the results, as there is no quantitative
information.

Widely used empirical principles on fault distributions, originally stud-
ied in [8], and in further replicated studies [9] and [10], are related to the
Pareto principle of fault distribution, persistence of faults across the veri-
fication phases, effects of module size and complexity on fault proneness.
Although the empirical Pareto principle has been confirmed in number of
different contexts and studies it does not imply that the underlying statis-
tical fault distributions are equal. In fact, the results in Table 4 show that,

19



Table 4: Ranking the probability distributions with respect to their performance in the
non-linear regression fitting of the empirical samples for the random variable counting the
number of faults in a software module

Rank This study Concas et al. [15] Zhang [14]

1 Double Pareto Yule-Simon Weibull
2 Lognormal Double Pareto Pareto
3 Yule-Simon Lognormal —
4 Weibull Weibull —
5 Pareto — —

with the exception of the Yule-Simon distribution, the order of the probabil-
ity distributions according to the goodness-of-fit coincides in this study and
in [15] and [14]. Hence, the main difference between our study and [15] is the
position of the Yule-Simon distribution. In the study [15] it is significantly
better than all others, while in our study it is only at the third position,
although close to the lognormal distribution at the second. However, it is
hard to say what exactly is the reason for the inconsistency, as there are
many possible influencing factors in such different contexts. It is also possi-
ble that the generative model of preferential attachment for the Yule-Simon
distribution does not apply in our context, but works well in the context of
the study by [15]. All these are interesting problems for further research.

One possible explanation for the difference is that the systems may be
in a different stage of equilibration. The software system may be considered
as a discrete complex system and studied as a physical system. It is in
perfect equilibrium when there are no new faults reported. At that stage
the discrete conservation laws may be imposed, just as in the continuous
physical systems (e.g. conservation of energy). The theory of conservation
laws for software systems was developed by Hatton in [24]. From these basic
principles, he predicts the behavior of a complex software system that is close
to equilibrium, in particular, the module size and fault distributions. If the
systems considered in this study and those in [15] and [14] are not in the same
stage of equilibration, it could be the reason for different fault distributions.

To determine how close to equilibrium a given software system is, one
may use the reliability growth models [25]. The system is in equilibrium,
when the reliability curve stabilizes. However, this should be taken with
caution, since every verification phase, and even every verification technique
has its own point of equilibrium, determined by the reliability curve of faults
detected in a specific verification phase or by a specific technique. So the full

20



system is in equilibrium only after all verification stages and techniques are
stabilized. Hence, an important line of further research is to study the fault
distributions in each verification phase. On the other hand, if a system is
produced evolutionary in a sequence of releases as the system in this study,
it would be interesting to observe the existence of the equilibrium point from
the system evolution perspective.

Another factor that could be the reason for different results here com-
pared to the previous studies is the module size distribution of the observed
system. The connection between fault distribution and module sizes was
already studied in the pioneering work [26]. The linear correlation between
faults and size is also one of the hypothesis considered in [8, 9, 10], but it was
only partially confirmed. The size distribution for software systems close to
equilibrium, as a consequence of the conservation laws was also studied in
[24]. As explained in previous section 2.1, the projects in this study are the
same as in [10], and a rough distribution of module sizes is given in Table 2.
It turns out that the size distribution in project P4 is quite different than in
other projects considered here. It has significantly higher portion of larger
modules (10–20 kLOC). On the other hand, observe that the order of best
fit fault distributions for project P4 is a bit different than for other projects,
close to the order reported in [15]. In particular, the Yule-Simon distri-
bution fits the fault data for project P4 equally well as the double Pareto
distribution. It could be possible that the generative model of preferential
attachment giving the Yule-Simon distribution depends on the size distribu-
tion. Unfortunately, only the total system size is reported in [15] and [14],
so that we cannot verify this conjecture.

6. Threats to validity

Internal validity refers to a proper demonstration of a casual relation
between two variables in a study. In our case, there are two possible threats
to internal validity, which are the same as in the original studies [14] and
[15]. As we follow the original studies in using the non-linear regression to
fit the fault data, the first threat to internal validity is a possibility that
the obtained distribution fits do not reflect the underlying distribution of
faults and are just obtained by chance. Very high R2 value assures that
this is not the case. Another possibility to verify this would be distribution
fitting using the maximum likelihood method, combined with Monte Carlo
simulation for evaluating the distribution fits. The second threat to internal

21



validity is that, even though the distribution is correct, it is not a consequence
of its generative model, when such model exists. This is a difficult question,
which was neither pursued here, nor in the original studies [14] and [15],
except that in the latter the very existence of a generative model for the
Yule-Simon distribution was taken as an additional argument in its favor.
The same holds for the double Pareto distribution, which is the best fit in
this study.

The construct validity refers to whether the particular properties of the
samples in a study are measures of general constructs. The question is to
which extent the sample projects studied in this paper represent the devel-
opment project of the considered system. Reducing the threat to construct
validity is the reason for using four projects on the same system. Note that
during this four projects the development organization have changed as ex-
plained in the Section 2.2 although the real faults for each release, represented
in figures of Section 4, seem to have visually almost the same behavior. It
turns out that the double Pareto distribution is, indeed, the best fit in all
the projects. However, the distribution parameters are varying, so that the
complete understanding of the construct would require further estimation
models for parameter changes. This difficult issue is out of scope of this
work. It is possible that the reason is in a different size distribution. The
results may also be influenced by the differences in data collection. The data
collection for this study is described in Section 2. It relies on the data from
trouble reports, which is very precise and linked to the system module at the
moment of fault detection and during correction. The data collection for the
Eclipse system in the previous study relies on the open bug report database,
in which it is not so easy to relate faults with modules, eliminate duplications
and false trouble reports.

External validity refers to the generality of the results across different set-
tings including those not considered in a study. This replication study is an
attempt to generalize the findings of the original studies on fault distributions
[15] and [14]. In this replication study we analyzed the fault distributions in
an industrial context, which is quite different from the open source develop-
ment environment in the original studies. Thus, addressing the threat to the
external validity is the main focus of this paper. It turns out that the results
are different than in the original studies, and possible reasons for that are
discussed in Sect. 5.

22



7. Conclusion

Building a software engineering theory of fault distributions has recently
received significant attention. So far, we are aware of empirical principles
regarding fault distributions that have been empirically confirmed in differ-
ent environments. However, knowing the appropriate statistical fault dis-
tribution would enable more systematic approach for software engineering
management practice. Then we could move a step forward in the software
engineering research. One direction would be to a more general level, that
is, looking for the underlying processes that generate distributions and how
they influence the statistical fault distributions, and thus, finally start to
build systematic theory of fault distributions. Another direction would be
towards prediction of fault distribution early in development projects, that
is, constructing parameter estimation models for the underlying distribution.

This paper contributes to the study of software fault distributions by
replicating the studies [15] and [14] in the context of a commercial large-scale
complex software system developed by a globally distributed organization
using strictly defined development processes. This is very different context
than the open source projects considered in the original studies, and it turns
out that the results are different. A high-level discussion of some possible
factors influencing different fault distribution in this and original studies is
provided in Section 5.

However, to determine exactly the factors controlling the fault distribu-
tion in complex software systems, it is necessary to gather more information
in similar and different contexts, and if possible conduct controlled exper-
iments with the aim to study the fault distributions. We hope that this
study will become a source of replications leading to better understanding
of the probability distribution of faults in complex software systems. This
would provide invaluable insight, and enable more systematic approach and
refinement of the empirical principles regarding fault distributions used in
the software development practice, as well as possible predictions of system
behavior for future releases.

Acknowledgment

The work presented in this paper is supported by the University of Rijeka
research grant 13.09.2.2.16.

23



References

[1] J. Juran, Quality control handbook, McGraw-Hill, New York, 1974.

[2] N. Ohlsson, H. Alberg, Predicting fault-prone software modules in tele-
phone switches, IEEE Trans. Softw. Eng. 22 (1996) no. 12, 886–894.

[3] B. Compton, C. Withrow, Prediction and control of ADA software de-
fects, J. Syst. Softw. 12 (1990) no. 3, 199–207.

[4] G. Denaro, M. Pezzè An empirical evaluation of fault-proneness models,
in: Proc. 24th Internat. Conf. on Softw. Eng. (ICSE ’02), pp. 241–251.

[5] M. English, C. Exton, I. Rigon, B. Cleary, Fault detection and prediction
in an open-source software project, in: Proc. 5th Internat. Conf. on
Predictor Models in Softw. Eng. (PROMISE ’09), pp. 17:1–17:11.

[6] M. Kaâniche, K. Kanoun, Reliability of a commercial telecommunica-
tions system, in: Proc. 7th Internat. Symp. on Softw. Reliability Eng.
(ISSRE ’96), pp. 207–212.

[7] J. Munson, T. Khoshgoftaar, The detection of fault-prone programs,
IEEE Trans. Softw. Eng. 18 (1992) no. 5, 423–433.

[8] N. Fenton, N. Ohlsson, Quantitative analysis of faults and failures in
a complex software system, IEEE Trans. Softw. Eng. 26 (2000) no. 8,
797–814.

[9] C. Andersson, P. Runeson, A replicated quantitative analysis of fault
distributions in complex software systems, IEEE Trans. Softw. Eng. 33
(2007) no. 5, 273–286.

[10] T. Galinac Grbac, P. Runeson, D. Huljenić, A second replicated quanti-
tative analysis of fault distributions in complex software systems, IEEE
Trans. Softw. Eng. 39 (2013) no. 4, 462–476.

[11] G. Concas, M. Marchesi, S. Pinna, N. Serra, Power-laws in a large
object-oriented software system, IEEE Trans. Softw. Eng. 33 (2007) no.
10, 687–708.

[12] P. Louridas, D. Spinellis, V. Vlachos, Power laws in software, ACM
Trans. Softw. Eng. and Methodology 18 (2008) no. 1, article no. 2.

24



[13] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, An empirical study of
social network metrics in object-oriented software, Advances in Softw.
Eng., vol. 2010, Article ID 729826, 21 pages, 2010.

[14] H. Zhang, On the distribution of software faults, IEEE Trans. Softw.
Eng. 34 (2008) no. 2, 301–302.

[15] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, I. Turnu, On the distri-
bution of bugs in the Eclipse system, IEEE Trans. Softw. Eng. 37 (2011)
no. 6, 872–877.

[16] M. E. J. Newman, Power laws, Pareto distributions and Zipf’s law,
Contemporary Physics 46 (2005), no. 5, 323–351.

[17] V. Pareto, Cours d’économie politique, F. Rouge, Lausanne, 1897.

[18] A. Clauset, C. R. Shalizi, M. E. J. Newman, Power-law distributions in
empirical data, SIAM Review 51 (2009) no. 4, 661–703.

[19] C. Stark, N. Hovius, The characterization of landslide size distributions,
Geophysical Research Letters 28 (2001) no. 6, 1091–1094.

[20] G. Yule, A mathematical theory of evolution based on the conclusions
of Dr. J. C. Willis, Philosophical Trans. Royal Soc. of London Series B
213 (1925), 21–87.

[21] H. Simon, On a class of skew distribution functions, Biometrika 42
(1955), 425–440.

[22] D. Bates, D. Watts, Nonlinear regression analysis and its applications,
John Wiley & Sons, New York, 1988.

[23] G. Yule, A mathematical theory of evolution based on the conclusions
of Dr. J. C. Willis, Philosophical Trans. Royal Soc. of London Series B
213 (1925), 21–87.

[24] L. Hatton, Power-Law Distributions of Component Size in General Soft-
ware Systems IEEE Trans. Softw. Eng. 35 (2009) no. 4, 566–572.

[25] Lyu MR (ed) Handbook of software reliability engineering, McGraw-
Hill, New York, 1996.

25



[26] V.R. Basili and B.T. Perricone, Software Errors and Complexity: an
Empirical Investigation, Commun. ACM, 27 (1984), no. 1, 42–52.

26


