
Software structure evolution and relation to system
defectiveness

Jean Petrić
Faculty of Engineering, University of Rijeka

Vukovarska 58
HR-51000 Rijeka, Croatia

jean.petric@riteh.hr

Tihana Galinac Grbac
Faculty of Engineering, University of Rijeka

Vukovarska 58
HR-51000 Rijeka, Croatia

tihana.galinac@riteh.hr

ABSTRACT
We still do not have clear figure about how software systems
evolve and how we may control its evolution process. Soft-
ware structure has been identified that may have the biggest
impact, especially because it may be represented from nu-
merous perspectives. Novelty introduced in this paper is
the way how we define the structure of evolving complex
software systems. The structure is represented with help of
graph representations, and subgraph frequencies, the con-
cept reused from the network analysis theory. The graph
structure of a software system and its evolution over the
system versions, as well as its relation to defectiveness, is
empirically studied in terms of subgraph frequencies and
motifs for more than 30 releases of three large open source
software systems. We identified that the same set of sub-
graphs of software system is present across the system ver-
sion, but different sets, although overlapping, are present in
different software systems. Furthermore, we confirmed the
continuous system evolution in terms of continuous struc-
ture change and we find some evidence for its relation to
system defectiveness.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Measurement, Experimentation

Keywords
Software defect prediction, network structure, subgraphs and
motifs, evolving complex software systems

1. INTRODUCTION
The aim of software defect prediction (SDP) is to predict
defect–prone locations in software. Although there are nu-
merous benefits of timely predicting defect–prone locations,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
EASE ’14 May 13 - 14 2014, London, England, BC, United Kingdom
Copyright 2014 ACM 978-1-4503-2476-2/14/05$15.00.
http://dx.doi.org/10.1145/2601248.2601287

one of the most important is guiding verification efforts and
making them more efficient. It is not possible, within reason-
able time and cost constraints, to verify the whole software
system. Moreover, with continuous growth of the complex-
ity of software systems, it becomes more and more important
to early focus verification efforts on defect–prone locations
in software.

The SDP research area has developed numerous models, but
with limited generalization. A major problem is the lack of
adequate and non–biased datasets [1, 2]. However, several
observations are frequently reported by different researchers.
Firstly, the process data (e.g. defects), collected during soft-
ware development process as a result of human activity, are
found to be better predictors of defect–proneness than prod-
uct metrics (e.g. Lines of code), [3]. Since human role in re-
porting the process data is crucial, the process data are more
exposed to bias. Secondly, analyzing communication links
within the software, it becomes clear that communication
centric software modules are generally more defect–prone,
[9].

The first finding motivated the research in direction of find-
ing better product metrics that would be useful for SDP,
while the second finding motivated investigation of commu-
nication structures. Complex system theory uses connected
graph structures as representations of physical systems and
tries to understand their behavior and evolution based on
communicating paths between basic building structural el-
ements. Recent findings in that area have really improved
the existing knowledge base about some complex systems.
Therefore, we were motivated to use graph structures as
a representation of software systems, and to observe their
communication substructures. Observing the software sys-
tem evolution by using these concepts may possibly lead to
new knowledge about software system behavior and evolu-
tion.

In this paper we employ concepts of network analysis to
complex software systems analysis and evolution. More pre-
cisely, we use three node connected directed graph structures
to represent the structure of a software system. Further-
more, we identify subgraphs that are present in analyzed
software, the frequencies of their occurrence, how these fre-
quencies change during software evolution, both in their ab-
solute frequency or in terms of their frequencies measured
with respect to their occurrence in random graphs. Finally,
we study the evolution of software structure through its rep-

resentation in subgraph frequencies and in relation to the
system defectiveness. In this empirical study we analyze
three Eclipse open source systems with 36 system release
versions.

The paper is organized as follows. In Sect. 2 we describe
what motivated this empirical study. In Sect. 3 we discuss
the related work in analysis of software evolution and defec-
tiveness using network analysis techniques. In Sect. 4 we
introduce the concepts from network analysis theory that
we apply in the empirical study. In Sect. 5 the empirical
experiment is described in detail. The results are given in
Sect. 6. Finally, in Sect.8 we conclude the paper.

2. MOTIVATION
Milo et al. [4] introduced in 2002 the concept of a sim-
ple building block, a directed connected subgraph structure,
that can be used to characterize and classify complex net-
works, and thus, reflect the underlying process that gener-
ated each network class. For example, different biological
and non-biological structures that surround us can be rep-
resented as a graph, so there is an open possibility to exam-
ine such structures and see if there are some sub-structures
(sub-graphs, or building blocks) which are statistically more
significant than others. Such statistically significant sub-
structures are called motifs (see Sect. 4).

Since then, a number of studies has been undertaken to an-
alyze network motifs [5, 6, 7]. Unfortunately, analysis of
network motifs has some computational limitations, because
number of sub-graphs increases exponential with respect to
network size or the sub-graph size, and there is no known
algorithm which can solve such problem in polynomial-time
[6]. However, the analysis on 3 and 4 node subgraph have al-
ready succeeded to identify that motif dominance is a prop-
erty of entire population, e.g. so-called feed forward loop is
a motif dominant in gene regulation, neurons and electronic
circuits, see Table 1.

Some interesting observations in network analysis using sub-
graphs and motifs have been made in [4]. Motif dominance
is independent of network size, its concentration is the same
in subnetworks of the analyzed network and in the com-
plete network, but in the randomized network versions of
the subgraph it decreases with size. The motifs tend to be
more significant as network grows. Sets of network motifs
are stable across the network class unless the network struc-
ture changes by random addition, removal or rearrangement
of the edges by 20%. Another interesting observation from
network theory is that k node subgraph frequencies, that
in sum have probability one in the analyzed graph struc-
ture, are bounded. Moreover, there exists mathematically
impossible combinations that bound some frequencies [10].

Changes of evolving systems, implemented in versions of the
same software program, are normally driven by quality im-
provements. However, the newer versions may degenerate
system defectiveness. These changes affect system structure
over the system evolution. Therefore, an interesting gen-
eral research question is could we manage software quality
by managing its structure? Hence, it is interesting to analyze
how the structure of software system and its defect prone-
ness have changed over versions of evolution and if there

is any correlation between them. It is not a novelty that
changes in software structure are influencing defect prone-
ness. If we can use the subgraph frequencies to characterize
our software structure, then it would be interesting to ana-
lyze if subgraph frequencies are related to defect proneness.
These could enable us to quantify this effect and use it as
an early indicator of software improvement for lowering de-
fect proneness. From the aforementioned observations on
network subgraph frequencies and motifs behavior, we were
motivated to investigate the following research questions in
the context of software structure, its evolution and relation
to system defectiveness.

RQ1 Which subgraphs/motifs with three nodes are present
in software systems?

RQ2 Are the same subgraphs/motifs present in different
systems and in different versions of the same evolving
system?

RQ3 How software structure, in terms of subgraph frequen-
cies and motifs, evolve over software versions?

RQ4 Is there a relation between subgraph frequencies/motifs
and system defectiveness?

3. RELATED WORK
Evolving software systems have been analyzed from many
perspectives. Special attention is given to open source sys-
tems because of available data.

There are several empirical studies trying to understand
Lehman’s statements about evolution of software systems
and their interrelations. These statements originated from
the analysis of large program growth dynamics [11]. Review
of empirical studies analyzing open source evolution, given
in [12], has identified several findings that we summarize
as follows. The support has been provided for continuing
change for systems which achieved maturity and succeeded
to pass initial development stage. Continuing growth seems
to well apply for OSS systems. Declining quality in respect
to defect rates is generally confirmed, but in a wider context
of the quality definition should be verified more. This state-
ment can be taken from Lehman’s law of software evolution.
Increasing complexity has been analyzed by many empirical
studies, but contradictory evidence is obtained. The authors
argue that structural complexity has many dimensions and
probably this is the main reason for such diversity in results.
In this paper we contribute to the existing body of knowl-
edge by observing the evolution of structural complexity in
terms of subgraph frequencies. Subgraph frequencies is an
approach to complex graph analysis that is widely investi-
gated area in structural research of complex systems that
are in focus of scientific interests in number of environments
(medicine, biology, Web, traffic, telecommunications).

Different metrics are used in empirical studies to measure
system growth or change and its relation to defects – e.g.
the source code metrics such as software source code size
[13], types, global variables, cumulative number of additions
and deletions, file change ([14]), etc. It is impossible to list
them all here so we mention just a few. Here we employ
completely different metrics for measuring software struc-
ture change with the help of the coordinate system defined

in terms of frequencies of subgraph occurrence in the source
code. We did not find other similar study in the field of soft-
ware evolution analysis. The software architecture is con-
sidered as one of the most important attributes of software
evolvability.

The defect prediction in evolutionary developed systems,
trying to reuse the same SDP model from the release to
release has been analyzed by Zimmermann, Nagappan et
al. [15, 16]. They find that SDP models might not work
well if reused from release to release. In [2] it is confirmed
that fewer serious failures occur in components implement-
ing commonality and that these components have less changes
over time, while components that implement variations are
subject to significant change continuously. They bring into
relation software structure and the role of the structural el-
ements in the software structure to its defectiveness. De-
pendency graphs are used in [15] to identify central pro-
gram units that are most likely to face defects. They com-
pared network measures and complexity measures. Network
measures are obtained using Ucinet tool distinguishing be-
tween ego measures that measure node connectivity with
its neighbors, global measures that measure the role of the
node within the complete network and measures for struc-
tural holes. Their empirical study was performed on the
binaries of a Windows Server 2003 and identified that SDP
models built from network measures are better than models
built from complexity metrics. Their study has been repli-
cated in [17] for five more projects, and they concluded that
network measures are not suitable for small scale projects.
Network measures were also used in the longitudinal em-
pirical study involving eleven large OSS programs [18]. In
the study product and process artifacts were represented
as graphs and were quantified with help of basic graph met-
rics such as average degree, clustering coefficient, node rank,
graph diameter, assortativity, edit distance and modularity
ratio. Correlating these measures they observed some inter-
esting and new observations. Among others, they observed
that software structures are similar across programs with
lower and upper bound of variation. With help of these
measures they were able to detect significant system change
for which they have even found evidence in the history of
system changes in terms of significantly higher amount of
modification requests. In terms of evolution, the software
have to change continuously, so that there could exist a more
sensitive way for identification of structural change. There-
fore, in this paper we analyze structure and structure change
using subgraph frequencies.

Approaches similar to our approach are those aiming to iden-
tify design patterns and anti–patterns (patterns that should
be avoided) by identifying micro–architectures in a software
program and relate them to software defects. Numerous de-
sign pattern detection approaches exist, but in majority they
are based on finding a pre–known pattern templates. Here
we are focusing on finding connected subgraphs. In [19] the
authors present the algorithm for finding three, four, and
five node connected subgraphs, implemented in SGFinder
tool, from class connections of the small to medium sized
Object–oriented software systems. Their work focused on
characterization of the specific subgraphs and their relation
to defectiveness. Here, in this paper we use the connected
subgraphs to represent the whole system and try to under-

stand its evolution trends and defectiveness. Moreover, our
study involved much larger systems with more releases.

4. NETWORK SUBGRAPHS AND MOTIFS
Network graph is a directed graph whose vertices are net-
work nodes and edges represent directed connections be-
tween these nodes. Network subgraphs resemble the topo-
logical structure of a network. Motifs are subgraphs which
are statistically over-represented structures in a network.
This means that they appear statistically more often than
usual. If there is a repeatedly occurring sub-structure in
a network, which occurs much more often than other sub-
structures, for further investigation, we must assure that
this has not happened by chance. Network motifs are dis-
tinguished according to the number of nodes and number of
edges connecting those nodes. All motifs are topologically
unequal to each other. Figure 1 presents all types of topolog-
ically unequal three node connected and directed subgraphs.
Frequency of these graphs is the subject of this paper.

Figure 1: All types of three node subgraphs

Over time, it was shown that there are network motifs which
are more common in various networks than others [4]. Those
network motifs are given in Table 1.

Because we are always doing analysis on one, so called real
network, we must somehow compare this network with some
others to perform statistical calculation and determine if
some network subgraphs are motifs, i.e., statistically sig-
nificant or not. For this purpose we use random networks.
Random networks, in our analysis, are those networks which
have same number of nodes and edges like real network, but
connections between nodes are made randomly.

The statistical significance is an important property in the
motif analysis, and can be calculated using the p-value or
Z-score. According to those values, we assure that some
motif is statistically significant or not. The p-value is the
probability that frequency of appearance of the motif in a
randomized network is equal or greater than the frequency
in the real network. Thus, smaller p-value indicates lower
possibility that appearance of the motif will be more often
in the random networks than in the real network, resulting
in a conclusion that the motif is significant. But, to calcu-
late reliable p-value, at least one thousand random networks
should be taken into consideration, [8].

Another important statistical value is a Z-score. To define
Z-score, we calculate frequencies of a candidate motif in the
real network (freal), and its frequencies in random networks
(frandom). Let frandom and σ2

random be the mean and vari-
ance of the frequencies in random networks. The Z-score is

Table 1: Characteristic motifs in various fields of science
Characteristic network Known as Motif

Gene regulation
Neurons
Electronic circuits

Feed-forward loop

World wide web

Feedback with two mutual
dyads and fully connected
triad, respectively from left
to right

Object-oriented soft-
ware

Feed-forward loop and up-
linked mutual dyad, re-
spectively from left to right

then defined as

Z =
freal − frandom√

σ2
random

.

Important difference between the p-value and Z-score is that
Z-score can be calculated even if there are less number of
random networks [4]. One hundred random networks could
be enough for getting reliable results. Finally, sub-graphs
are occasionally declared as motifs if p-value is less or equal
than 0.01 or Z-score is grater than 2, [6]. There are also
other ways to determine statistical significance of the net-
work motifs, which is beyond the scope of this paper.

Network motifs are considered in different fields of science,
especially in biology, medicine, electrical engineering, etc.
The purpose of network motif analysis is to find some char-
acteristics which are common in some group of interest. If
we take medicine for instance, it would be very interesting
to find common patterns for some diseases. Also it would be
interesting if medical researchers could be in position to un-
derstand evolution of such diseases and be ready to prevent
it. On the other hand, revealing the network motifs can
be helpful in understanding how people think while “surf-
ing” on the Internet, providing for example better results in
search engines. Understanding network motifs can also help
in connecting people on social networks, because some com-
mon patterns which connect those people could be found.

Some of the tools that are seeking network motifs are Kavosh,
mFinder, MODA, etc. Difference between them is in the al-
gorithms used, which leads to faster or slower execution time
[20]. Because of diversity in network motif detection tool
algorithms, different results will be obtained on the same
observed network. All these tools in the process of motif de-

termination are calculating the subgraph frequencies, given
in Figure 1, within analyzed network. Note that the ma-
jor difference in these tools is in algorithms for generating
random networks not in search for subgraph frequencies.

5. STUDY DESIGN
5.1 Hypotheses
The main research questions listed in the Sect. 2 are ad-
dressed with the help of the following hypotheses.

Hypotheses about subgraphs presence
H1 The same subgraphs are present across different versions
of the same software program.
H2 The same subgraphs are present across different software
system programs.

Hypotheses about structural evolution
H3 Subgraph frequencies do not change over system evolu-
tion. Distribution of subgraph frequencies is the same in all
versions of the system.
H4 Subgraph frequencies tend to stabilize during system
evolution.

Hypotheses about effects of structural evolution on defect
proneness
H5 Subgraph frequencies are good predictors of number of
defects in system version.

Hypotheses about motif stability in software structures
H6 The same motifs are present across all software systems
and all system versions.

5.2 Data collection
We have chosen three open source projects written in Java
to take needed information for this research, which includes

three different Eclipse plugins: Business Intelligence and
reporting tools (BIRT), Plug-in Development Environment
(PDE), and Java development tools (JDT). Reasons for such
selection are several:

• they are complex enough for network analysis,

• they evolve over a number of system releases,

• we have access to 9 versions of BIRT and 13 versions
of PDE and 14 versions of JDT that gives us frankly
good sample for our statistical analysis,

• we have access to open defect repository used in soft-
ware development.

Number of other projects satisfy the above stated criteria
but they are left for future work. Also, all three plugins
are developed during long-time period. BIRT plugin is de-
veloped in period of 7 years in 9 different versions we have
access, JDT plugin in period of 12 years through 14 different
versions and PDE plugin in period of 11 years through 13
different versions. Process of collecting data for this research
is divided in few steps:

1. collecting relevant source code files from Eclipse repos-
itories for different plugins (Source code files)

2. creating network graphs from source code files (Net-
work files)

3. determining subgraph frequencies and motifs with Kavosh
and mFinder

4. getting number of defects from Eclipse Bugzilla pages

5. grouping and preparation of files for data analysis

The above process is repeated for each version of each plugin.
Each step of the data collection procedure will be elaborated
in more detail in the following paragraphs.

Source code files. Firstly, we find all tags for the above
stated Eclipse plugin projects from the Web site of Eclipse.org
Git repositories1 and downloaded compressed project files
for each release within the project separately. Secondly, we
removed all test files from each project file by removing all
folders that contain word test in its name. Please refer to
Naming convention web page for Eclipse projects2.

Note that we analyzed just org.eclipse.ui[.*] components (work-
bench) for JDT and PDE plugins. Other components were
too small for the motif and subgraph analysis.

Network files. Kavosh and mFinder tools expect network
file as an input. Those files are provided through rFind
tool. rFind tool seeks for relation between classes/modules.
When two classes communicate, through method invocation,
return type or parameters rFind detects it and marks down
that relation. In this way graph is built, and network file is
produced.

1http://git.eclipse.org/c/
2https://wiki.eclipse.org/Naming Conventions

Subgraph frequencies and motifs. For subgraph fre-
quencies and network motif determination we used mFinder
[1] and Kavosh [2] tools, freely available from the web pages.
In the analysis we use motif size 3, number of random net-
works 100 and Z-score acceptance ≥ 2. In motif detection
process both tools calculate frequencies for all directed sub-
graphs of given motif size. There are 13 possible subgraphs
with three nodes. Full enumeration of subgraphs along with
mFinder algorithm is described in [4].

Defects. Number of defects per version for each plugin are
collected from official Eclipse Bugzilla repository3. Only
defects which satisfy special condition are taken into consid-
eration. The condition which needs to be satisfied is that
resolution of the defect must have status fixed. That ensures
that fix for this bug is checked into the tree and tested. For
other condition options which Eclipse Bugzilla offers, all val-
ues are taken into account, which means defects with any
status, severity, priority, hardware and operating system on
which the defect is present. This is just preliminary analysis
and further analysis may refine this criteria.

Data analysis files. For the purpose of data analysis we
created three tables, one per Eclipse plugin. Tables are
stacked and presented in Table 2. Rows in the table con-
tain information collected for one release. Therefore, in the
first column we have release version identity, the next 11
columns contain information about subgraph frequencies per
each subgraph and the last 13th column contains the total
number of defects.

5.3 Data analysis techniques
For the purpose of analysis, besides observational conclu-
sions, we also used several statistical techniques.

In analysis of hypothesis H3 we have to identify if there is
a significant change in structure during software evolution.
We perform the analysis with the help of subgraph frequen-
cies, which are some kind of representation of network struc-
ture. Since, subgraph frequencies may be considered as a
categorical variable, the Pearson chi-square statistic is used
as analysis technique.

Hypothesis H5 is analyzed using Pearson and Spearman
rank correlation between subgraph frequencies for each sub-
graph and the number of defects. Pearson analysis requires
normally distributed data and Spearman rank correlations
is more robust to data type. Although, in the case of cat-
egorical data the Spearman rank correlation may be more
appropriate choice, because of completeness of the analysis
we perform both calculations.

6. ANALYSIS
Table 2 provides dataset used in analysis. Analysis results
are discussed in separate subsections that are structured in
accordance to stated hypothesis.

6.1 Hypotheses about subgraphs presence
This group of hypotheses we analyze just by simple obser-
vation of data collection results in Table 2. We can identify
that in all observed cases the set of subgraphs (subgraph ids

3https://bugs.eclipse.org/bugs/

Table 2: Dataset used for the analysis
1 (6) 2 (12) 3 (14) 4 (36) 5 (38) 6 (46) 7 (74) 8 (78) 9 (98) 10 (102) 11 (108) Defects

BIRT 2.0 77408 25578 635 3601110 5129 78 4348 84 1 1 46 2864
BIRT 2.1 37050 11206 290 873768 2282 35 1676 34 1 0 20 2279
BIRT 2.2 93256 29529 611 4934605 5861 81 4606 85 1 1 48 1905
BIRT 2.3 103713 31058 676 6077470 6295 83 4585 94 1 1 50 858
BIRT 2.5 52110 14239 348 1398471 3059 48 2221 47 1 0 22 665
BIRT 2.6 107850 30498 609 7007340 6533 82 4204 74 1 1 43 175
BIRT 3.7 125269 26946 487 9010159 6801 79 1694 28 1 0 31 46
BIRT 4.2 117325 25804 457 8212615 6503 73 1658 28 1 0 30 31
BIRT 4.3 113963 25411 450 7733108 6467 73 1650 28 1 0 29 26
JDT 1.0 23620 2417 38 178207 755 3 12 1 0 0 0 2584
JDT 1.1 56342 4577 47 646440 1574 5 21 3 0 0 0 1481
JDT 2.0 68460 4812 44 803718 1763 5 21 3 0 0 0 1058
JDT 3.0 80520 6380 50 1119079 2122 6 26 3 0 0 0 864
JDT 3.1 86917 7311 49 1248497 2372 7 26 3 0 0 0 606
JDT 3.2 97234 848 107 1388250 3029 20 74 6 0 0 0 318
JDT 3.3 107234 8781 100 1516278 3033 16 84 3 0 0 0 252
JDT 3.4 110531 8846 99 1558709 3149 16 84 3 0 0 0 194
JDT 3.5 109755 8930 98 1565121 3159 16 84 3 0 0 0 185
JDT 3.6 115995 9060 99 1588862 3250 16 85 3 0 0 0 80
JDT 3.7 6734 720 0 59406 228 0 0 0 0 0 0 66
JDT 3.8 116351 9052 99 1591644 3255 16 85 3 0 0 0 59
JDT 4.2 115995 9060 99 1588862 3250 16 85 3 0 0 0 17
JDT 4.3 76411 5987 48 1007275 2028 6 26 3 0 0 0 0
PDE 2.0 5253 104 0 132343 24 0 0 0 0 0 0 992
PDE 2.1 14539 515 0 195885 213 0 0 0 0 0 0 699
PDE 3.0 38611 2956 16 543494 1012 3 0 0 0 0 0 695
PDE 3.1 32408 2246 3 990694 703 2 0 0 0 0 0 580
PDE 3.2 3416 82 0 64528 25 0 0 0 0 0 0 547
PDE 3.3 31383 2049 17 361370 726 3 0 0 0 0 0 489
PDE 3.4 30159 2038 0 863484 655 0 0 0 0 0 0 486
PDE 3.5 4957 161 0 108232 43 0 0 0 0 0 0 410
PDE 3.6 33845 2268 12 1099887 733 3 0 0 0 0 0 301
PDE 3.7 34684 2292 12 1137434 751 3 0 0 0 0 0 144
PDE 3.8 35158 2322 36 1182209 761 11 0 0 0 0 0 84
PDE 4.2 35387 2324 12 1179663 755 3 0 0 0 0 0 49
PDE 4.3 35387 2324 12 1179663 755 3 0 0 0 0 0 42

are presented between parentheses in header of Table 2) that
is present in initial version of software system is also present
in all further software versions. But, not all software sys-
tems have all subgraphs represented in their structure and
there are differences in subgraphs present in structures of
different software systems. However, for the analyzed sys-
tems the subgraphs with 1(id6), 2(id2), 3(id14), 4(id36) and
5(id38) are present in all software systems and all systems
versions. These conclusions are obtained by analyzing the
following hypotheses.

H1 The same subgraphs are present across different versions
of the same software program. In Table 2 we can observe
that in all three analyzed Eclipse projects the same set of
subgraphs is present along the project evolution, just the
subgraph frequencies are changed as the system evolved.
Therefore, solely based on this observation we can say that
we have evidence in favor to this hypothesis for observed
projects. This indicates that the system structure does not
evolve radically, by involving new subgraphs. Perhaps this
conclusion is very much dependent on level of system change.

H2 The same subgraphs are present across different software
system programs. Projects in Table 2 are ordered according
to number of connections between classes (short CBC). CBC
simply counts how many relation, per one Eclipse plugin, be-
tween classes exists (e.g. method in class A invokes method
in class B which is equal to 1 CBC). Eclipse BIRT, the first
given in the table has the biggest CBC number and equals
22126, then followed by JDT.UI which has CBC 13731 and
PDE.UI with CBC 7012. CBC values are calculated as av-
erage value from all versions of each plugin. Observing the
subgraph frequencies we can notice that different subgraphs
are represented in each Eclipse project structure. Software
system with biggest CBC number has also the most sub-
graphs represented in its structure. Probably, as the CBC
grows the more complicated subgraph structures occur in
the software structure. However, we can not claim this state-
ment is generally valid.

6.2 Hypotheses about structural evolution
Some studies have been using a set of subgraph frequencies
to form a coordinate system where different system struc-
tures could be presented [10]. We reuse this concept and

assume that system structure could be represented by sub-
graph frequencies of three node subgraphs present in some
software structure. Therefore, we study if analysis of soft-
ware structure through subgraph frequencies could help us
in better understanding of system evolution.

H3 Subgraph frequencies do not change over system evolu-
tion. Distribution of subgraph frequencies is the same in all
versions of system. Calculating χ2 test statistic by using
contingency table with all versions of the software system,
we identified that the distribution of system frequencies is
associated with system version. The value of χ2 statistic,
degrees of freedom (df) along with p-values at α = 0.05
significance level are given in Table 3. Therefore, we may
say that the hypothesis H3 is rejected and that subgraph
frequencies change over system evolution.

Table 3: Results of chi-square test
Project Last # of versions χ2 statistic df p–value
BIRT 2 92,76 9 <0.00001

3 362,87 18 <0.00001
4 6465,31 30 <0.00001
5 74216,22 40 <0.00001
6 76914,12 50 <0.00001
7 83865,1 60 <0.00001
8 135468,14 70 <0.00001

all versions 145015,28 80 <0.00001
JDT 2 0,13 7 <0.00001

3 0,17 14 <0.00001
4 68,79 24 <0.00001
5 162,29 28 <0.00001
6 194,83 35 <0.00001
7 6474,05 42 <0.00001
8 6625,09 49 <0.00001
9 6669,14 56 <0.00001
10 8536,73 63 <0.00001
11 10569,84 70 <0.00001
12 20196,64 77 <0.00001
13 20260,47 84 <0.00001

all versions 21834,71 91 <0.00001
PDE 2 17,81 5 <0.00001

3 28,37 10 <0.00001
4 45,24 15 <0.00001
5 67,28 20 <0.00001
6 285,19 25 <0.00001
7 804,75 30 <0.00001
8 26033,57 35 <0.00001
9 51857 40 <0.00001
10 57952,27 45 <0.00001
11 58193,03 50 <0.00001
12 58364,38 55 <0.00001

all versions 58704,49 60 <0.00001

H4 Subgraph frequencies tend to stabilize during system evo-
lution. Visual analysis of the Table 2 indicates that the fre-
quencies of particular subgraphs changes slightly comparing
to some earlier versions. Therefore, we start our stability
analysis from these last versions and comparing with the
previous. Calculating χ2 test statistics by using contingency
table with increasing the number of the last versions of the
software system in the analysis we identified that we CAN

NOT claim the system frequencies are not associated with
system version. The value of χ2 statistic, degrees of free-
dom (df) along with p-values at α = 0.05 significance level
are given in Table 3. Therefore, we may say that the hy-
pothesis H4 is rejected and that subgraph frequencies are
in continuous change with system versions over the system
evolution.

It is possible that different conclusions would be obtained if
the analysis is performed with respect to release time instead
of release sequence number. Another possibility is that the
distribution of subgraph frequencies is stabilized when only
most frequent subgraphs are considered. These issues are
left for future work.

6.3 Hypotheses about effects of structural evo-
lution on defect proneness

In previous hypotheses some interesting findings about soft-
ware structure evolution have motivated us to extend the in-
vestigation of this study to identify if there are relationship
between software structure and defectiveness of system dur-
ing its evolution. As we observed that system is structurally
changed significantly, we were motivated to verify if some of
dimensions of structural change are more related to system
defectiveness than others. Some studies have identified that
SDP models could not be just simply reused from projects in
the same domain or with the same process [16]. One possi-
ble explanation may be because the defectiveness of software
system is significantly correlated to software structure that
is also significantly changed during the system evolution.

H5 Subgraph frequencies are good predictors of number of
defects in system version. Pearson and Spearman correla-
tion coefficients are given in Table 4. Pearson and Spearman
rank correlation coefficients are calculated for number of de-
fects in relation to different variables measured in evolution
of analyzed software systems. Variables that were calculated
for each version of software system are as follows: number
of nodes, number of edges, and frequencies for each of sub-
graphs given in Table 1. Since subgraphs 12 and 13 do not
appear in any of the software projects, we omit them from
the table. The analyzed software systems were BIRT, JDT
and PDE. The same correlation coefficients are calculated
for all projects together, that is referred in the table as ALL
in the Projects column. All correlation coefficients that are
significant (p-value is lower than 0.5) are in bold font.

According to the results presented in Table 4, we may ob-
serve that number of nodes and edges is strongly correlated
with number of defects, and this correlation is negative. This
means that with the rise of number of nodes and edges in
the software graph, the number of defects is falling. Another
interesting observation is that the frequency of the most fre-
quent subgraph (4, id36), in all of the observed software
graphs, is very much correlated with number of defects. This
correlation is even higher (-0.34, -0.8, -0.75). It is also in-
teresting to note the correlation between number of defects
and subgraph 6 (id46). This subgraph is very rare com-
pared to subgraph 4 (id36), but is also relatively strongly
correlated with number of defects (-0.53, -0.61). Note that
all correlations are calculated for number of defects reported
on the whole system. In majority of studies correlations are
calculated among various variables and number of defects

measured at the module or class level. All identified cor-
relations are negative! That may be an indication that as
system grows it is getting more stabilized in terms of num-
ber of defects. This is expected result since the evolution of
software systems is driven with quality improvements.

6.4 Hypotheses about motif stability
H6 The same motifs are present across all software systems
and all system versions. In all three different plugins we
have found that motif 5 (id38) is present, occasionally with
high Z-score value. Also, we have found that in BIRT and
JDT plugins motif 6 (id46) is present for some or all versions
of software. Table 5 shows the summary for all projects.

Table 5: Results from mFinder and Kavosh tools
Project Version Motif Motif Z Z

count no and id count mFinder Kavosh
BIRT 9 5, id38 9 13.95 9.88

6, id46 9 7.14 2.38
JDT 14 5, id38 14 15.66 11.08

6, id46 7 4.96 -
PDE 13 5, id38 10 7.94 7.81

6, id46 1 - 2.69

In Table 5 results from all three plugins are grouped and
shown together. Version count shows how many versions
of particular plugin are processed, in the column motif its
ID is presented (according to [4]), motif count presents the
number of versions where specific motif is detected, Z is
the average value of Z obtained from mFinder or Kavosh.
Figure 2 presents the structure of motifs in Eclipse plugins.

Figure 2: Dominant motifs from Eclipse plugins

Motif 5 (id38) is also known as feed-forward loop. This
motif is frequent in many different fields of science. For ex-
ample, in biology, it is shown that feed-forward loop appears
10 standard deviations more often than in randomized net-
work (in bacterium E. coli). In this research, Z-value indi-
cates that feed-forward loop is also very frequent in observed
plugins, so we can tell that this has not happened by acci-
dent. Motif 6 (id46) appears less frequently than motif 5
(id38), but we can not ignore more than 4 standard devi-
ations greater appearance than in random network. Thus,
these two motifs could tell us something more about how
communication between objects affects some software at-
tributes. So we took two approaches to analyze them. The
first approach is to see how Z-value is changed over new
versions of software, and the second approach looks if there
is any relation between number of reported defects in ev-
ery single version of plugin and Z-score. Results of both
approaches are shown in the subfigures of the Figure 3.

Figure 3: Relations between motifs obtained from
mFinder and Kavosh tool and average number of
defects through versions

From Figure 3 it is evident that different tools give different
results. The reason for this is different algorithm which is
used in those tools. While mFinder gives us motif 6 (id46)
with average Z-score 7.14 and 4.96 in BIRT and JDT plugins
respectively, Kavosh gives us much smaller Z-value for BIRT
– 2.38 and for JDT plugin does not find motif 6 (id46) to be
over-represented in real network at all. Furthermore, from
Figure 3 we can point on two more things. The first is that in
BIRT plugin Z-value of both motifs increases with every new
version. So, developers of this plugin in every new version of
plugin use more and more communication between classes
which matches motif 5 (id38) and motif 6 (id46). Similar
is also with JDT and PDE plugins, but with JDT there is
some slight decrease after version 3.5, and with PDE there is
a jump between versions 3.3 and 3.4. In general, the newer
version of plugin, the more stable motif is obtained – or
more class connections with motif types 5 (id38) and 6 (id46)
are made. The second thing is that there is no relationship
between number of defects per version and the Z-value. But,
because this paper employs the total number of defects per
version, we can not make conclusion that there is no relation
between those two parameters. The possibility of a logical
connection between defects and motifs is not excluded at

Table 4: Correlation coefficients
Proj. Measure Nodes Edges 1 2 3 4 5 6 7 8 9 10 11
All P coef. -0,26 -0,33 -0,21 0,15 0,28 -0,11 0,02 0,18 0,39 0,41 0,29 0,40 0,33

p–val. 0,13 0,05 0,21 0,37 0,10 0,52 0,93 0,29 0,02 0,01 0,09 0,01 0,05
All S coef. -0,49 -0,47 -0,38 -0,08 -0,01 -0,37 -0,22 -0,09 0,03 0,11 0,10 0,31 0,12

p–val. 0,00 0,00 0,02 0,63 0,94 0,03 0,20 0,60 0,88 0,50 0,58 0,07 0,49
BIRT P coef. -0,98 -0,98 -0,66 -0,28 0,10 -0,70 -0,54 -0,26 0,42 0,47 NaN 0,41 0,23

p–val. 0 0 0,05 0,46 0,79 0,03 0,13 0,5 0,26 0,21 NaN 0,28 0,55
BIRT S coef. -1 -1 -0,8 -0,08 0,30 -0,80 -0,72 0,03 0,65 0,7 NaN 0,52 0,27

p–val. 0 0 0,01 0,84 0,44 0,01 0,04 0,96 0,07 0,05 1 0,19 0,49
JDT P coef. -0,88 -0,88 -0,58 -0,43 -0,44 -0,62 -0,57 -0,53 -0,56 -0,27 NaN NaN NaN

p–val. 0 0 0,03 0,12 0,12 0,02 0,03 0,05 0,04 0,36 NaN NaN NaN
JDT S coef. -0,97 -0,97 -0,51 -0,48 -0,31 -0,52 -0,52 -0,37 -0,55 -0,03 NaN NaN NaN

p–val. 0 0 0,06 0,08 0,29 0,06 0,06 0,19 0,04 0,91 NaN NaN NaN
PDE P coef. -0,91 -0,64 -0,56 -0,51 -0,56 -0,76 -0,49 -0,57 NaN NaN NaN NaN NaN

p–val. 0 0,01 0,05 0,07 0,05 0,00 0,09 0,04 NaN NaN NaN NaN NaN
PDE S coef. -1 -0,75 -0,50 -0,55 -0,45 -0,75 -0,56 -0,61 NaN NaN NaN NaN NaN

p–val. 0 0 0,08 0,05 0,13 0,00 0,04 0,03 NaN NaN NaN NaN NaN

some different level, but this question is left for future work.

7. THREATS TO VALIDITY
Object oriented systems are systems with high code reuse.
Therefore investigation of system subgraph frequencies may
be an indicator of system structure but may suffer from gen-
eralizations to some closed industrial code with proprietary
languages.

In our study we analyzed the evolution of the Eclipse sys-
tem plugins, BIRT, PDE and JDT. This may represent the
threat to generalizing of the results in sense that our find-
ings are limited to the Eclipse plugins. Only complex parts
of systems are taken into account, because other parts are
not big enough for motif/subgraph analysis (like is already
mentioned in section 5.2.1). Removal of small parts could
represent bias.

The evolution is analyzed with respect to release time in-
stead of release sequence number. The version sequence
number may not be aligned with time and that may repre-
sent a threat. That is the reason why we decided to extend
this analysis in future to observe system evolution over the
release time dimension.

The motif detection algorithm could influence the results ob-
tained in the motif analysis. Therefore, in order to eliminate
this kind of bias we used the mFinder and Kavosh tools. Al-
though tools give different results these are not completely
different and even more the similarities are repeated in all
observed versions. So we avoid to make definite conclusions
based on the analysis results with these differences.

8. CONCLUSIONS AND FUTURE WORK
Network analysis approach to software evolution and de-
fect prediction is a very promising area of research. Since
it is independent of metrics from the development process
and metrics involving real code complexity, considering only
communication paths, it is very promising area for moving
predictions in very early phases, e.g. architecture definition.
The potential is in guiding the software evolution, not just
as controlling and correcting factor but also in its design. In

this paper we reuse the concepts of network analysis theory.
The software system is represented as graph. The software
structure is represented by the frequency of occurrence of
all three node subgraphs. In this representation there may
be some very frequent subgraphs and some statistically fre-
quent subgraphs in comparison to its occurrence in the ran-
dom graph called motifs.

We have several contributions in this paper. Firstly, we ob-
serve that same set of subgraphs are present in all versions
of system evolution. This set is changed in different sys-
tems but with overlapping in subgraphs present. We proved
that analyzed systems evolve continuously and the change
in their structure is statistically significant. We could not
confirm that the analyzed systems tend to stabilize. This
is an important finding because it mean that with help of
subgraph frequencies we can better differentiate the soft-
ware systems and on quantitative basis. Also, continuous
change of software structure can explain weak reusability
of software defect prediction models across the system ver-
sions. We identified that defectiveness is correlated with
some subgraphs. Motifs are shown to be consistent across
system versions and across different software systems. Their
significance it seams to grow with the system grow and sys-
tem maturity.

For this research few important steps have been realized,
which include the elaboration of ideas for this and future
work, realization of rFind tool which will help in further
data collection from other Java source codes and unify the
way of how the data are collected. Future work would cer-
tainly go deeper in finding how other software attributes
affect on subgraphs and motifs, especially how defects on
class level have influence on structure, subgraph occurrence
and motif significance. Moreover, we want to replicate the
same analysis for different application domains, i.e. telecom-
munications, medical software etc. Also, in future, we will
expand gathering of different complexity measures for differ-
ent software systems. In this work we have look evolution
of software systems only by its versions, so in future we will
also include time-period of software releases, because then
we will have better picture of how stability of motifs changes

during time. There is also a plan to extend rFind tool to
work for other programming or scripting languages such as
C++, Python, etc. This will make it possible to collect
data for different kind of software (CAD, financial, web ap-
plications) and perform some analysis for wider sample of
software systems.

Acknowledgment
The work is supported by the University of Rijeka research
grant 13.09.2.2.16.

9. REFERENCES
[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S.

Counsell. A systematic literature review on fault
prediction performance in software engineering. IEEE
Trans. Softw. Eng., 38(6):1276, 1304, Nov. 2012.

[2] S. Krishnan, R. R. Lutz, and K. Goševa-Popstojanova.
Empirical evaluation of reliability improvement in an
evolving software product line. In Proceedings of the
8th Working Conference on Mining Software
Repositories (MSR ’11). ACM, New York, NY, USA,
103-112.

[3] T. Galinac Grbac, P. Runeson, and D. Huljenić. A
second replicated quantitative analysis of fault
distributions in complex software systems. IEEE
Trans. Softw. Eng., 39(4):462–476, 2013.

[4] R. Milo, S. Shen-Orr, S. Itzkovitz, et al. Network
motifs: simple building blocks of complex networks.
Science 2002; 298:824–27.

[5] Y. Ma, K. He, J Liu. Network Motifs in
Object-Oriented Software Systems. Dynamics of
Continuous, Discrete and Impulsive Systems (Series B:
Applications and Algorithms), 14(S6): 166-172, 2007;
arXiv:0808.3292.

[6] E. Wong, B. Baur, S. Quader, C. Huang. Biological
network motif detection: principles and practice.
Briefings in Bioinformatics, 2011;

[7] L. Wen, D. Kirk, R. G. Dromey. Software Systems as
Complex Networks. Cognitive Informatics, 6th IEEE
International Conference, 2007;

[8] B. H. Junker, F. Schreiber. Analysis of Biological
Networks. Wiley, 2008.

[9] A. von Mayrhauser, J. Wang, M.C. Ohlsson and C.
Wohlin. Deriving a Fault Architecture from Defect
History. Proceedings International Symposium on
Software Reliability Engineering, 1999;

[10] J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph
frequencies: mapping the empirical and extremal
geography of large graph collections. In Proc. of the
22nd Internat. Conference on World Wide Web
(WWW ’13), pages 1307-1318. International World
Wide Web Conferences Steering Committee, Geneva,
Switzerland, 2013.

[11] M. M. Lehman and L. A. Belady (Eds.). Program
Evolution: Processes of Software Change. Academic
Press Prof., Inc., San Diego, CA, 1985.

[12] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and
A. Capiluppi. Empirical studies of open source
evolution. In T. Mens and S. Demeyer (Eds.), Software
Evolution, pages 263–288, Springer, Berlin–Heidelberg,
2008.

[13] I. Herraiz, J. M. González-Barahona, G. Robles, D. M.
Germán. On the prediction of the evolution of libre
software projects, ICSM 2007, 405-414.

[14] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.
Predicting Fault Incidence Using Software Change
History. IEEE Trans. Softw. Eng. 26, 7 (July 2000),
653-661.

[15] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. ICSE
2008: 531-540.

[16] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In
Proceedings of the ESEC/FSE ’09. ACM, New York,
NY, USA, 91-100.

[17] A. Tosun, B. Turhan, and A. Bener. Validation of
network measures as indicators of defective modules in
software systems. In Proceedings of the 5th
International Conference on Predictor Models in
Software Engineering (PROMISE ’09). ACM, New
York, NY, USA, Article 5 , 9 pages.

[18] P. Bhattacharya, M. Iliofotou, I. Neamtiu, M.
Faloutsos. Graph-based analysis and prediction for
software evolution. ICSE 2012: 419-429

[19] A. Belderrar, S. Kpodjedo, Y. Guéhéneuc, G. Antoniol
and P. Galinier. Sub-graph Mining: Identifying
Micro-architectures in Evolving Object-Oriented
Software. CSMR 2011: 171-180

[20] M. Zuba. A Comparative Study of Network Motif
Detection Tools. UConn Bio-Grid, REU Summer,
2009;

